
	

	

	 	

	

	

CIS	PostgreSQL	9.5	Benchmark	
	
v1.0.0	-	07-27-2018																																																											

	

	

1	|	P a g e 	
	

Terms	of	Use	
Please see the below link for our current terms of use:
https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/	

	 	

	

2	|	P a g e 	
	

Table	of	Contents	
Terms	of	Use	...	1

Table	of	Contents	..	2

Overview	...	6

Intended	Audience	..	6

Consensus	Guidance	...	6

Typographical	Conventions	..	7

Scoring	Information	...	7

Profile	Definitions	...	8

Acknowledgements	..	9

Recommendations...	10

1	Installation	and	Patches	..	10

1.1	Ensure	packages	are	obtained	from	authorized	repositories	(Not	Scored)	10

1.2	Ensure	Installation	of	Community	Packages	(Not	Scored)	...	12

1.3	Ensure	Installation	of	Binary	Packages	(Not	Scored)	...	16

1.4	Ensure	Service	Runlevel	Is	Registered	And	Set	Correctly	(Scored)	18

1.5	Ensure	Data	Cluster	Initialized	Successfully	(Scored)	..	20

2	Directory	and	File	Permissions	..	22

2.1	Ensure	the	file	permissions	mask	is	correct	(Scored)...	22

2.2	Ensure	the	PostgreSQL	pg_wheel	group	membership	is	correct	(Scored)	24

3	Logging	Monitoring	And	Auditing	(Centos	6)	...	26

3.1	PostgreSQL	Logging	..	26

3.1.1	Logging	Rationale..	26

3.1.2	Ensure	the	log	destinations	are	set	correctly	(Scored)...	26

3.1.3	Ensure	the	logging	collector	is	enabled	(Scored)	..	28

3.1.4	Ensure	the	log	file	destination	directory	is	set	correctly	(Scored)	30

3.1.5	Ensure	the	filename	pattern	for	log	files	is	set	correctly	(Scored)	32

3.1.6	Ensure	the	log	file	permissions	are	set	correctly	(Scored)	...	34

3.1.7	Ensure	'log_truncate_on_rotation'	is	enabled	(Scored)	..	36

3.1.8	Ensure	the	maximum	log	file	lifetime	is	set	correctly	(Scored)................................	38

	

3	|	P a g e 	
	

3.1.9	Ensure	the	maximum	log	file	size	is	set	correctly	(Scored)	..	40

3.1.10	Ensure	the	correct	syslog	facility	is	selected	(Scored)	...	42

3.1.11	Ensure	the	program	name	for	PostgreSQL	syslog	messages	is	correct	(Scored)
	...	44

3.1.12	Ensure	the	correct	messages	are	sent	to	the	database	client	(Not	Scored)	46

3.1.13	Ensure	the	correct	messages	are	written	to	the	server	log	(Not	Scored)	48

3.1.14	Ensure	the	correct	SQL	statements	generating	errors	are	recorded	(Not	
Scored)	...	50

3.1.15	Ensure	'log_min_duration_statement'	is	disabled	(Scored)	52

3.1.16	Ensure	'debug_print_parse'	is	disabled	(Scored)	..	54

3.1.17	Ensure	'debug_print_rewritten'	is	disabled	(Scored)	...	55

3.1.18	Ensure	'debug_print_plan'	is	disabled	(Scored)	..	56

3.1.19	Ensure	'debug_pretty_print'	is	enabled	(Scored)..	57

3.1.20	Ensure	'log_checkpoints'	is	enabled	(Scored)	..	58

3.1.21	Ensure	'log_connections'	is	enabled	(Scored)	..	59

3.1.22	Ensure	'log_disconnections'	is	enabled	(Scored)	..	61

3.1.23	Ensure	'log_duration'	is	enabled	(Scored)	...	63

3.1.24	Ensure	'log_error_verbosity'	is	set	correctly	(Not	Scored)	64

3.1.25	Ensure	'log_hostname'	is	set	correctly	(Scored)	...	66

3.1.26	Ensure	'log_line_prefix'	is	set	correctly	(Not	Scored)	...	68

3.1.27	Ensure	'log_lock_waits'	is	enabled	(Scored)	..	70

3.1.28	Ensure	'log_statement'	is	set	correctly	(Scored)	...	71

3.1.29	Ensure	all	temporary	files	are	logged	(Scored)	...	73

3.1.30	Ensure	'log_timezone'	is	set	correctly	(Scored)...	75

3.1.31	Ensure	'log_parser_stats'	is	disabled	(Scored)	...	76

3.1.32	Ensure	'log_planner_stats'	is	disabled	(Scored)	..	78

3.1.33	Ensure	'log_executor_stats'	is	disabled	(Scored)	..	80

3.1.34	Ensure	'log_statement_stats'	is	disabled	(Scored)	...	82

3.2	Ensure	the	PostgreSQL	Audit	Extension	(pgAudit)	is	enabled	(Scored)	84

4	User	Access	and	Authorization	..	87

4.1	Ensure	sudo	is	configured	correctly	(Scored)...	87

	

4	|	P a g e 	
	

4.2	Ensure	valid	public	keys	are	installed	(Scored)	...	89

4.3	Ensure	excessive	administrative	privileges	are	revoked	(Scored).............................	92

4.4	Ensure	excessive	function	privileges	are	revoked	(Scored)	..	95

4.5	Ensure	excessive	DML	privileges	are	revoked	(Scored)	..	97

4.6	Ensure	Row	Level	Security	(RLS)	is	configured	correctly	(Not	Scored)	100

5	Connection	and	Login	..	104

5.1	Ensure	login	via	"local"	UNIX	Domain	Socket	is	configured	correctly	(Not	Scored)
	..	104

5.2	Ensure	login	via	"host"	TCP/IP	Socket	is	configured	correctly	(Scored)	108

6	PostgreSQL	Settings..	111

6.1	Ensure	'Attack	Vectors'	Runtime	Parameters	are	Configured	(Not	Scored)	111

6.2	Ensure	'backend'	runtime	parameters	are	configured	correctly	(Scored)	113

6.3	Ensure	'Postmaster'	Runtime	Parameters	are	Configured	(Not	Scored)	115

6.4	Ensure	'SIGHUP'	Runtime	Parameters	are	Configured	(Not	Scored)	118

6.5	Ensure	'Superuser'	Runtime	Parameters	are	Configured	(Not	Scored)	121

6.6	Ensure	'User'	Runtime	Parameters	are	Configured	(Not	Scored)	124

6.7	Ensure	SSL	is	enabled	and	configured	correctly	(Scored)	...	128

6.8	Ensure	FIPS	140-2	OpenSSL	Cryptography	Is	Used	(Scored)	131

6.9	Ensure	the	pgcrypto	extension	is	installed	and	configured	correctly	(Not	Scored)
	..	134

7	Replication	..	136

7.1	Ensure	SSL	Certificates	are	Configured	For	Replication	(Scored)	137

7.2	Ensure	base	backups	are	configured	and	functional	(Not	Scored)..........................	140

7.3	Ensure	WAL	archiving	is	configured	and	functional	(Scored)	142

7.4	Ensure	streaming	replication	parameters	are	configured	correctly	(Not	Scored)
	..	144

8	Special	Configuration	Considerations..	146

8.1	Ensure	PostgreSQL	configuration	files	are	outside	the	data	cluster	(Not	Scored)
	..	146

8.2	Ensure	PostgreSQL	subdirectory	locations	are	outside	the	data	cluster	(Not	
Scored)	..	149

	

5	|	P a g e 	
	

8.3	Ensure	the	backup	and	restore	tool,	'pgBackRest',	is	installed	and	configured	
(Not	Scored)	...	151

8.4	Ensure	miscellaneous	configuration	settings	are	correct	(Not	Scored)................	155

Appendix:	Summary	Table	...	157

Appendix:	Change	History	..	160

	

	 	

	

6	|	P a g e 	
	

Overview	
This	document,	CIS	PostgreSQL	9.5	Benchmark,	provides	prescriptive	guidance	for	
establishing	a	secure	configuration	posture	for	PostgreSQL	9.5.	This	guide	was	tested	
against	PostgreSQL	9.5	running	on	CentOS	6,	but	applies	to	other	Linux	distributions	as	
well.	To	obtain	the	latest	version	of	this	guide,	please	visit	
http://benchmarks.cisecurity.org.	If	you	have	questions,	comments,	or	have	identified	
ways	to	improve	this	guide,	please	write	us	at	feedback@cisecurity.org.	

	

Intended Audience

This	document	is	intended	for	system	and	application	administrators,	security	specialists,	
auditors,	help	desk,	and	platform	deployment	personnel	who	plan	to	develop,	deploy,	
assess,	or	secure	solutions	that	incorporate	PostgreSQL	9.5.	

	

Consensus Guidance

This	benchmark	was	created	using	a	consensus	review	process	comprised	of	subject	
matter	experts.	Consensus	participants	provide	perspective	from	a	diverse	set	of	
backgrounds	including	consulting,	software	development,	audit	and	compliance,	security	
research,	operations,	government,	and	legal.		

Each	CIS	benchmark	undergoes	two	phases	of	consensus	review.	The	first	phase	occurs	
during	initial	benchmark	development.	During	this	phase,	subject	matter	experts	convene	
to	discuss,	create,	and	test	working	drafts	of	the	benchmark.	This	discussion	occurs	until	
consensus	has	been	reached	on	benchmark	recommendations.	The	second	phase	begins	
after	the	benchmark	has	been	published.	During	this	phase,	all	feedback	provided	by	the	
Internet	community	is	reviewed	by	the	consensus	team	for	incorporation	in	the	
benchmark.	If	you	are	interested	in	participating	in	the	consensus	process,	please	visit	
https://workbench.cisecurity.org/.	

	 	

	

7	|	P a g e 	
	

Typographical Conventions

The	following	typographical	conventions	are	used	throughout	this	guide:	

Convention	 Meaning	

Stylized Monospace font Used	for	blocks	of	code,	command,	and	script	examples.	
Text	should	be	interpreted	exactly	as	presented.	

Monospace font Used	for	inline	code,	commands,	or	examples.	Text	should	
be	interpreted	exactly	as	presented.		

<italic	font	in	brackets>	 Italic	texts	set	in	angle	brackets	denote	a	variable	
requiring	substitution	for	a	real	value.	

Italic	font	 Used	to	denote	the	title	of	a	book,	article,	or	other	
publication.	

Note	 Additional	information	or	caveats	

	

Scoring Information

A	scoring	status	indicates	whether	compliance	with	the	given	recommendation	impacts	the	
assessed	target's	benchmark	score.	The	following	scoring	statuses	are	used	in	this	
benchmark:	

Scored	

Failure	to	comply	with	"Scored"	recommendations	will	decrease	the	final	benchmark	score.	
Compliance	with	"Scored"	recommendations	will	increase	the	final	benchmark	score.	

Not	Scored	

Failure	to	comply	with	"Not	Scored"	recommendations	will	not	decrease	the	final	
benchmark	score.	Compliance	with	"Not	Scored"	recommendations	will	not	increase	the	
final	benchmark	score.	

	

	 	

	

8	|	P a g e 	
	

Profile Definitions

The	following	configuration	profiles	are	defined	by	this	Benchmark:	

• Level	1	-	PostgreSQL	on	Linux	

Items	in	this	profile	apply	to	PostgreSQL	9.5	running	on	Linux	and	intend	to:	

o be	practical	and	prudent;	
o provide	a	clear	security	benefit;	and	
o not	inhibit	the	utility	of	the	technology	beyond	acceptable	means.	 	

	

9	|	P a g e 	
	

Acknowledgements

This benchmark exemplifies the great things a community of users, vendors, and subject matter
experts can accomplish through consensus collaboration. The CIS community thanks the entire
consensus team with special recognition to the following individuals who contributed greatly to
the creation of this guide:

Author	
Robert	Bernier	
Doug	Hunley	
Duane	Rensby	

Contributor	
Philippe	Langlois	
Paul	Harrington	
Tairo	Mendoza	
Robert	Blok	
Kelvin	Tan	Thiam	Teck	CEH	
Scott	Mead	

Editor	
Karen	Scarfone		
Tim	Harrison	CISSP,	ICP,	Center	for	Internet	Security	 	

	

10	|	P a g e 	
	

Recommendations	
1 Installation and Patches

One	of	the	best	ways	to	ensure	secure	PostgreSQL	security	is	to	implement	security	
updates	as	they	come	out,	along	with	any	applicable	OS	patches	that	will	not	interfere	with	
system	operations.	It	is	additionally	prudent	to	ensure	the	installed	version	has	not	
reached	end-of-life.	

1.1 Ensure packages are obtained from authorized repositories (Not
Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

When	obtaining	and	installing	software	packages	(typically	via	yum),	it's	imperative	that	
packages	are	sourced	only	from	valid	and	authorized	repositories.	For	PostgreSQL,	a	short	
list	of	valid	repositories	would	include	CentOS	(www.centos.org)	and	the	official	
PostgreSQL	website	(yum.postgresql.org).	

Rationale:	

Being	open	source,	PostgreSQL	packages	are	widely	available	across	the	internet	through	
RPM	aggregators	and	providers.	However,	using	invalid	or	unauthorized	sources	for	
packages	can	lead	to	implementing	untested,	defective	or	malicious	software.	

Many	organizations	choose	to	implement	a	local	yum	repository	within	their	organization.	
Care	must	be	taken	to	ensure	that	only	valid	and	authorized	packages	are	downloaded	and	
installed	into	such	local	repositories.	

Audit:	

Identify	and	inspect	configured	repositories	to	ensure	they	are	all	valid	and	authorized	
sources	of	packages.	The	following	is	an	example	of	a	simple	CENTOS	6	install	illustrating	
the	use	of	the	yum repolist all	command.	 	

	

11	|	P a g e 	
	

$ yum repolist all | grep enabled:
base CentOS-6 - Base enabled: 6,696
extras CentOS-6 - Extras enabled: 62
updates CentOS-6 - Updates enabled: 581

Ensure	the	list	of	configured	repositories	only	includes	organization-approved	repositories.	
If	any	unapproved	repositories	are	listed,	this	is	a	fail.

Remediation:	

Alter	the	configured	repositories	so	they	only	include	valid	and	authorized	sources	of	
packages.	
Here	is	an	example	of	adding	an	authorized	repository:	

1. Install	the	PGDG	repository	RPM	from	yum.postgresql.org	

$ rpm -ivh
https://download.postgresql.org/pub/repos/yum/9.5/redhat/rhel-6-
x86_64/pgdg-centos95-9.5-3.noarch.rpm
Retrieving
https://download.postgresql.org/pub/repos/yum/9.5/redhat/rhel-6-
x86_64/pgdg-centos95-9.5-3.noarch.rpm
warning: /var/tmp/rpm-tmp.DAPqyf: Header V4 DSA/SHA1 Signature, key ID
442df0f8: NOKEY
Preparing... ###
[100%]
 1:pgdg-centos95 ###
[100%]

2. Verify	the	repository	has	been	added	and	is	enabled.	

$ yum repolist all | grep enabled:
base CentOS-6 - Base enabled: 6,696
extras CentOS-6 - Extras enabled: 62
updates CentOS-6 - Updates enabled: 581
pgdg PostgreSQL 9.5 6 - x86_64 enabled: 406

References:	

1. http://wiki.centos.org/PackageManagement/Yum/	
2. https://www.centos.org/docs/5/html/5.2/Deployment_Guide/s1-yum-yumconf-

repository.html	
3. https://en.wikipedia.org/wiki/Yellowdog_Updater,_Modified	
4. https://www.howtoforge.com/creating_a_local_yum_repository_centos	

CIS	Controls:	

2	Inventory	of	Authorized	and	Unauthorized	Software	
Inventory	of	Authorized	and	Unauthorized	Software	

	

12	|	P a g e 	
	

1.2 Ensure Installation of Community Packages (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Adding,	and	installing,	the	PostgreSQL	community	packages	to	the	host's	package	
repository.	

Rationale:	

It's	an	unfortunate	reality	that	Linux	Distributions	do	not	always	have	the	most	up-to-date	
versions	of	PostgreSQL.	Disadvantages	of	older	releases	include:	missing	bug	patches,	no	
access	to	highly	desirable	contribution	modules,	no	access	to	3rd	party	projects	that	are	
complimentary	to	Postgres,	and	no	upgrade	path	migrating	from	one	version	of	Postgres	to	
the	next.	The	worst	set	of	circumstances	is	to	be	limited	to	a	version	of	the	DBMS	that	has	
reached	its	end-of-life.	

From	a	security	perspective,	it's	imperative	that	Postgres	Community	Packages	are	only	
obtained	from	the	official	website	https://www.postgresql.org/.	Being	open	source,	the	
Postgres	packages	are	widely	available	over	the	internet	via	myriad	package	aggregators	
and	providers.	Obtaining	software	from	these	unofficial	sites	risks	installing	defective,	
corrupt,	or	downright	malicious	versions	of	Postgres.	

Audit:	

First	determine	whether	or	not	the	PostgreSQL	Community	Packages	are	installed.	For	this	
example,	we	are	using	a	host	that	does	not	have	any	PostgreSQL	packages	installed	and	
offer	resolution	in	the	Remediation	Procedure	below.	We	will	illustrate	two	methods	rpm	
and	yum.	In	both	cases	nothing	is	returned.	

$ rpm -qa | grep postgres
$

$ yum list installed postgres*
Checksum type 'md5' disabled
Loaded plugins: fastestmirror
Loading mirror speeds from cached hostfile
* base: mirrors.gigenet.com
* epel: mirror.compevo.com
* extras: mirror.us-midwest-1.nexcess.net
* updates: pubmirrors.dal.corespace.com
Error: No matching Packages to list

	

13	|	P a g e 	
	

If	the	expected	community	packages	are	not	installed	or	not	the	expected	versions,	this	is	a	
fail.

Remediation:	

Using	a	web	browser,	go	to	http://yum.postgresql.org	and	navigate	to	the	repo	download	
link	for	your	OS	and	version.	The	following	example	blocks	the	outdated	distro	packages,	
adds	the	PGDG	repository	RPM	for	PostgreSQL	version	9.5,	and	installs	the	client-server-
contributions	rpms	to	the	host	where	you	want	to	install	the	RDBMS:	

$ vi /etc/yum.repos.d/CentOS-Base.repo
[base]
name=CentOS-$releasever - Base
mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&
repo
=os&infra=$infra
#baseurl=http://mirror.centos.org/centos/$releasever/os/$basearch/
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-6
exclude=postgresql* <-- add this line

#released updates
[updates]
name=CentOS-$releasever - Updates
mirrorlist=http://mirrorlist.centos.org/?release=$releasever&arch=$basearch&
repo
=updates&infra=$infra
#baseurl=http://mirror.centos.org/centos/$releasever/updates/$basearch/
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-6
exclude=postgresql* <-- add this line

$ yum -y install https://yum.postgresql.org/9.5/redhat/rhel-6-x86_64/pgdg-
redhat95-9.5-3.noarch.rpm

$ yum -y groupinstall "PostgreSQL Database Server 9.5 PGDG"
Loaded plugins: fastestmirror
Setting up Group Process
Loading mirror speeds from cached hostfile
 * base: ftp.osuosl.org
 * extras: repo.us.bigstepcloud.com
 * updates: repo1.dal.innoscale.net
Resolving Dependencies
--> Running transaction check
---> Package postgresql95.x86_64 0:9.5.6-5PGDG.rhel6 will be installed
---> Package postgresql95-contrib.x86_64 0:9.5.6-5PGDG.rhel6 will be
installed
---> Package postgresql95-libs.x86_64 0:9.5.6-5PGDG.rhel6 will be installed
---> Package postgresql95-server.x86_64 0:9.5.6-5PGDG.rhel6 will be
installed
--> Finished Dependency Resolution

Dependencies Resolved

	

14	|	P a g e 	
	

==
====
 Package Arch Version Repository
Size
==
====
Installing:
 postgresql95 x86_64 9.5.6-5PGDG.rhel6 pgdg95
1.4 M
 postgresql95-contrib x86_64 9.5.6-5PGDG.rhel6 pgdg95
491 k
 postgresql95-libs x86_64 9.5.6-5PGDG.rhel6 pgdg95
285 k
 postgresql95-server x86_64 9.5.6-5PGDG.rhel6 pgdg95
4.8 M

Transaction Summary
==
====
Install 4 Package(s)

Total download size: 6.9 M
Installed size: 27 M
Downloading Packages:
(1/4): postgresql95-9.5.6-5PGDG.rhel6.x86_64.rpm | 1.4 MB 00:00
(2/4): postgresql95-contrib-9.5.6-5PGDG.rhel6.x86_64.rpm | 491 kB 00:00
(3/4): postgresql95-libs-9.5.6-5PGDG.rhel6.x86_64.rpm | 285 kB 00:00
(4/4): postgresql95-server-9.5.6-5PGDG.rhel6.x86_64.rpm | 4.8 MB 00:00
--

Total 2.1 MB/s | 6.9 MB 00:03
Running rpm_check_debug
Running Transaction Test
Transaction Test Succeeded
Running Transaction
 Installing : postgresql95-libs-9.5.6-5PGDG.rhel6.x86_64
1/4
 Installing : postgresql95-9.5.6-5PGDG.rhel6.x86_64
2/4
 Installing : postgresql95-server-9.5.6-5PGDG.rhel6.x86_64
3/4
 Installing : postgresql95-contrib-9.5.6-5PGDG.rhel6.x86_64
4/4
 Verifying : postgresql95-libs-9.5.6-5PGDG.rhel6.x86_64
1/4
 Verifying : postgresql95-server-9.5.6-5PGDG.rhel6.x86_64
2/4
 Verifying : postgresql95-contrib-9.5.6-5PGDG.rhel6.x86_64
3/4
 Verifying : postgresql95-9.5.6-5PGDG.rhel6.x86_64
4/4

Installed:
 postgresql95.x86_64 0:9.5.6-5PGDG.rhel6
 postgresql95-contrib.x86_64 0:9.5.6-5PGDG.rhel6
 postgresql95-libs.x86_64 0:9.5.6-5PGDG.rhel6
 postgresql95-server.x86_64 0:9.5.6-5PGDG.rhel6

	

15	|	P a g e 	
	

Complete!

Note:	The	above-mentioned	example	is	referenced	as	an	illustration	only.	The	distro,	and	
version,	varies	according	to	one's	requirements.	Visit	the	Postgres	community	web	portal	
for	more	information.

References:	

1. https://www.postgresql.org/	
2. https://www.postgresql.org/support/versioning/	
3. https://www.postgresql.org/developer/roadmap/	
4. http://yum.postgresql.org/repopackages.php	

CIS	Controls:	

18.1	Use	Only	Vendor-supported	Software	
For	all	acquired	application	software,	check	that	the	version	you	are	using	is	still	
supported	by	the	vendor.	If	not,	update	to	the	most	current	version	and	install	all	
relevant	patches	and	vendor	security	recommendations.	

	

16	|	P a g e 	
	

1.3 Ensure Installation of Binary Packages (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	PostgreSQL	package(s)	are	installed	on	the	Operating	System	from	valid	source.	

Rationale:	

Standard	Linux	distributions,	although	possessing	the	requisite	packages,	often	do	not	have	
PostgreSQL	pre-installed.	The	installation	process	includes	installing	the	binaries	and	the	
means	to	generate	a	data	cluster	too.	Package	installation	should	include	the	server	and	
client	packages.	Contribution	modules	are	optional	depending	upon	one's	architectural	
requirements.	

From	a	security	perspective,	it's	imperative	to	verify	PostgreSQL	binary	packages	are	
sourced	from	a	valid	Linux	yum	repository.	The	most	common	Linux	repositories	include	
RHEL	base,	CentOS	base	and	PGDG	base;	however,	it's	up	to	the	organization	to	validate.	
For	a	complete	listing	of	all	PostgreSQL	binaries	available	via	configured	repositories	
inspect	the	output	from	yum provides postgres*.	

Audit:	

To	inspect	what	versions	of	PostgreSQL	packages	are	installed	we	can	query	using	the	rpm	
command.	As	illustrated	below,	PostgreSQL	8.4	packages	are	installed:	

rpm -qa|grep postgres
postgresql-8.4.20-8.el6_9.x86_64
postgresql-server-8.4.20-8.el6_9.x86_64
postgresql-libs-8.4.20-8.el6_9.x86_64
postgresql-contrib-8.4.20-8.el6_9.x86_64

If	the	expected	binary	packages	are	not	installed	or	not	the	expected	versions,	this	is	a	fail.

Remediation:	

If	the	version	of	PostgreSQL	installed	is	not	9.5.x,	the	packages	may	be	uninstalled	using	
this	command:	

yum remove $(rpm -qa|grep postgres)

	

17	|	P a g e 	
	

The	next	recommendation	"1.3	Ensure	Installation	of	Community	Packages"	describes	how	
to	explicitly	choose	which	version	of	PostgreSQL	to	install,	regardless	of	Linux	distribution	
association.

Impact:	

If	the	PostgreSQL	version	shipped	as	part	of	the	default	binary	installation	associated	with	
your	Linux	distribution	satisfies	your	requirements,	this	may	be	adequate	for	development	
and	testing	purposes.	However,	for	production	instances	it's	generally	recommended	to	
install	the	latest	stable	release	of	PostgreSQL.	

CIS	Controls:	

2	Inventory	of	Authorized	and	Unauthorized	Software	
Inventory	of	Authorized	and	Unauthorized	Software	

	

18	|	P a g e 	
	

1.4 Ensure Service Runlevel Is Registered And Set Correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Confirm,	and	set	if	necessary,	the	PostgreSQL	runlevel	on	system-V	operating	systems.	

Rationale:	

Setting	the	runlevel	on	a	System	V	OS	ensures	the	database	service	is	active	especially	
when	a	change	of	state	occurs	as	in	the	case	of	a	system	startup,	reboot	or	an	explicit	
change	of	runlevel	by	the	sys-admin.	

Audit:	

The	default	run-level	on	RedHat/CentOS	operating	systems	is	typically	"3".	One	confirms	
the	default	run-level	and	those	run-levels	desirous	of	running	PostgreSQL	by	executing	the	
following;	

$ grep initdefault: /etc/inittab
id:3:initdefault:

$ chkconfig --list | grep postgres
postgresql-9.5 0:off 1:off 2:off 3:off 4:off 5:off 6:off

If	the	intended	PostgreSQL	service	is	not	registered	(no	output	for	thechkconfig	
command)	or	is	not	configured	to	appropriate	runlevel	(3:off	above),	this	is	a	fail.

Remediation:	

Irrespective	of	package	source,	PostgreSQL	services	can	be	identified	because	it	typically	
includes	the	text	string	"postgresql".	Correct	installs	automatically	register	the	service	
although	it	may	still	be	off.	Multiple	instance	of	postgres	services	often	distinguish	
themselves	using	a	version	number.	Unregistered	services	must	be	added	before	its	
runlevel	can	be	administrated.	

$ chkconfig --add postgresql-9.5

$ chkconfig --level 3 postgresql-9.5 on

$ chkconfig --list | grep postgres
postgresql-9.5 0:off 1:off 2:off 3:on 4:off 5:off 6:off	

	

19	|	P a g e 	
	

References:	

1. http://linuxcommand.org/man_pages/runlevel8.html	
2. http://linuxcommand.org/man_pages/chkconfig8.html	
3. http://www.tldp.org/LDP/sag/html/run-levels-intro.html	

CIS	Controls:	

18	Application	Software	Security	
Application	Software	Security	

	

20	|	P a g e 	
	

1.5 Ensure Data Cluster Initialized Successfully (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Create	a	new	PostgreSQL	database	cluster.	First	time	installs	of	PostgreSQL	requires	the	
instantiation	of	the	database	cluster.	A	database	cluster	is	a	collection	of	databases	that	are	
managed	by	a	single	server	instance.	

Rationale:	

For	the	purposes	of	security,	PostgreSQL	enforces	ownership	and	permissions	of	the	data-
cluster	such	that:	

• An	initialized	data-cluster	is	owned	by	the	UNIX	account	that	created	it.	
• The	data-cluster	cannot	be	accessed	by	other	UNIX	user-accounts.	
• The	data-cluster	cannot	be	created	or	owned	by	root	
• The	Postgres	process	cannot	be	invoked	by	root	nor	any	UNIX	user	account	other	

than	the	owner	of	the	data	cluster.	

Incorrectly	instantiating	the	data-cluster	will	result	in	a	failed	installation.	

Audit:	

Assuming	installing	the	Postgres	binary	package	from	either	the	CENTOS	6,	or	Community	
repository	(rpm)	installation;	the	standard	method,	as	root,	is	to	instantiate	the	cluster	
thusly:	

$ service postgresql-9.5 initdb
Initializing database: [OK]

A	correctly	installed	data-cluster	"data"	possesses	directory	permissions	similarly	to	the	
following	example.	Otherwise,	the	service	will	fail	to	start:

ls -al ~postgres/9.5
total 20
drwxr-xr-x 4 postgres postgres 4096 Nov 5 16:46 .
drwx------ 3 postgres postgres 4096 Nov 5 15:45 ..
drwx------ 19 postgres postgres 4096 Nov 5 16:46 data
-rw------- 1 postgres postgres 1380 Nov 5 16:46 pgstartup.log	

	

21	|	P a g e 	
	

Remediation:	

Attempting	to	instantiate	a	data	cluster	to	an	existing	non-empty	directory	will	fail:	

$ service postgresql-9.5 initdb
Data directory is not empty!
[root@pg1_centos ~]# [FAILED]

In	the	case	of	a	cluster	instantiation	failure,	one	must	delete/remove	the	entire	data	cluster	
directory	and	repeat	the	initdb	command:

$ rm -rf ~postgres/9.5
$ service postgresql-9.5 initdb

	

22	|	P a g e 	
	

2 Directory and File Permissions

This	section	provides	guidance	on	securing	all	operating	system	specific	objects	for	
PostgreSQL.	

2.1 Ensure the file permissions mask is correct (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Files	are	always	created	using	a	default	set	of	permissions.	File	permissions	can	be	
restricted	by	applying	a	permissions	mask	called	the	umask.	The	postgres	user	account	
should	use	a	umask	of	077	to	deny	file	access	to	all	user	accounts	except	the	owner.	

Rationale:	

The	Linux	OS	defaults	the	umask	to	002,	which	means	the	owner	and	primary	group	can	
read	and	write	the	file,	and	other	accounts	are	permitted	to	read	the	file.	Not	explicitly	
setting	the	umask	to	a	value	as	restrictive	as	077	allows	other	users	to	read,	write,	or	even	
execute	files	and	scripts	created	by	the	postgres	user	account.	The	alternative	to	using	a	
umask	is	explicitly	updating	file	permissions	after	file	creation	using	the	command	line	
utility	chmod.	

Audit:	

To	view	the	mask's	current	setting,	as	the	postgres	user,	execute	the	command:	

umask
077

The	umask	must	be077	or	more	restrictive	for	the	postgres	user,	otherwise	this	is	a	fail.

Remediation:	

Depending	upon	the	postgres	user's	environment,	the	umask	is	typically	set	in	the	
initialization	file	.bash_profile,	but	may	also	be	set	in	.profile	or	.bashrc.	To	set	the	
umask,	add	the	following	to	the	appropriate	profile	file:	

umask 077	

	

23	|	P a g e 	
	

Default	Value:	

002	

CIS	Controls:	

14.4	Protect	Information	With	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	
enforce	the	principle	that	only	authorized	individuals	should	have	access	to	the	
information	based	on	their	need	to	access	the	information	as	a	part	of	their	
responsibilities.	

	

24	|	P a g e 	
	

2.2 Ensure the PostgreSQL pg_wheel group membership is correct
(Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	group	pg_wheel	is	explicitly	created	on	a	host	where	the	Postgres	server	is	installed.	
Membership	in	this	group	enables	an	ordinary	user	account	to	gain	superuser	access	to	a	
machine	by	using	the	su	command.	Only	user	accounts	authorized	to	have	superuser	access	
should	be	members	of	the	pg_wheel	group.	

Rationale:	

Users	with	unauthorized	membership	in	the	pg_wheel	group	can	assume	the	privileges	of	
the	owner	of	the	Postgres	RDBMS	and	administer	the	database,	as	well	as	accessing	scripts,	
files,	and	other	executables	they	should	not	be	able	to	access.	

Audit:	

Execute	the	command	groups	to	confirm	that	a	pg_wheel	group	exists.	If	no	such	group	
exists,	this	is	a	fail.	If	such	a	group	does	exist,	view	its	membership	and	confirm	that	each	
user	is	authorized	to	act	as	an	administrator.	

Remediation:	

If	the	pg_wheel	group	does	not	exist,	use	the	following	command	to	create	it:	

$ getent group pg_wheel || groupadd pg_wheel && getent group pg_wheel
pg_wheel:x:502:

Note:	that	your	system's	group	number	may	not	be	502.	That's	OK.	
Adding	the	postgres	user	to	the	newly	created	group	is	done	by	issuing:

$ gpasswd -a postgres pg_wheel
Adding user postgres to group pg_wheel	

	

25	|	P a g e 	
	

Removing	a	user	account	from	the	pg_wheel	group	is	achieved	by	executing	the	following	
command:

$ gpasswd -d pg_wheel user1
Removing user user1 from group pg_wheel
$ groups user1
user1 : user1

References:	

1. http://man7.org/linux/man-pages/man1/groups.1.html	
2. http://man7.org/linux/man-pages/man8/getent.1.html	
3. http://man7.org/linux/man-pages/man8/gpasswd.1.html	
4. http://man7.org/linux/man-pages/man8/useradd.8.html	
5. https://en.wikipedia.org/wiki/Wheel_%28Unix_term%29	

CIS	Controls:	

14.4	Protect	Information	With	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	
enforce	the	principle	that	only	authorized	individuals	should	have	access	to	the	
information	based	on	their	need	to	access	the	information	as	a	part	of	their	
responsibilities.	 	

	

26	|	P a g e 	
	

3 Logging Monitoring And Auditing (Centos 6)

This	section	provides	guidance	with	respect	to	PostgreSQL's	auditing	and	logging	behavior.	

3.1 PostgreSQL Logging

This	section	provides	guidance	with	respect	to	PostgreSQL's	auditing	and	logging	behavior.	

3.1.1 Logging Rationale

Having	an	audit	trail	is	an	important	feature	of	any	relational	database	system.	You	want	
enough	detail	to	describe	when	an	event	of	interest	has	started	and	stopped,	what	it	is,	it's	
cause,	and	what	it's	doing	to	the	system.	

Ideally,	the	logged	information	is	in	a	format	permitting	further	analysis	giving	us	new	
perspectives	and	insight.	

The	Postgres	configuration	file	postgresql.conf	is	where	all	adjustable	parameters	can	be	
set.	A	configuration	file	is	created	as	part	of	the	data	cluster's	creation	i.e.	initdb.	The	
configuration	file	enumerates	all	tunable	parameters	and	even	though	most	of	them	are	
commented	out	it	is	understood	that	they	are	in	fact	active	and	at	those	very	same	
documented	values.	The	reason	that	they	are	commented	out	is	to	signify	their	default	
values.	Uncommenting	them	will	force	the	server	to	read	these	values	instead	of	using	the	
default	values.	

3.1.2 Ensure the log destinations are set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	supports	several	methods	for	logging	server	messages,	including	stderr,	
csvlog	and	syslog.	On	Windows,	eventlog	is	also	supported.	One	or	more	of	these	
destinations	should	be	set	for	server	log	output.	

Rationale:	

If	log_destination	is	not	set,	then	any	log	messages	generated	by	the	core	PostgreSQL	
processes	will	be	lost.	 	

	

27	|	P a g e 	
	

Audit:	

Execute	the	following	SQL	statement	to	view	the	log	destinations:	

postgres=# show log_destination;
 log_destination

 stderr
(1 row)

	
The	log	destinations	should	comply	with	your	organization's	policies	on	logging.	If	all	the	
expected	log	destinations	are	not	set,	this	is	a	finding.

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	setting	
the	log	destination	to	csvlog):	

postgres=# alter system set log_destination = 'csvlog';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Note:	If	more	than	one	log	destination	is	to	be	used,	set	this	parameter	to	a	list	of	desired	
log	destinations	separated	by	commas.

Default	Value:	

stderr	

Notes:	

logging_collector	(section	3.1.2)	must	be	enabled	to	generate	CSV-format	log	output.	

CIS	Controls:	

6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	
and	various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	
record	logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	
Common	Event	Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	
format,	log	normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

	

28	|	P a g e 	
	

3.1.3 Ensure the logging collector is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	logging	collector	is	a	background	process	that	captures	log	messages	sent	to	stderr	and	
redirects	them	into	log	files.	The	logging_collector	setting	must	be	enabled	in	order	for	this	
process	to	run.	It	can	only	be	set	at	server	start.	

Rationale:	

The	logging	collector	approach	is	often	more	useful	than	logging	to	syslog,	since	some	types	
of	messages	might	not	appear	in	syslog	output.	One	common	example	is	dynamic-linker	
failure	message;	another	may	be	error	messages	produced	by	scripts	such	as	
archive_command.	

Note:	This	setting	must	be	enabled	for	certain	other	logging	parameters	to	take	effect.	

Audit:	

Execute	the	following	SQL	statement	and	confirm	that	the	logging_collector	is	enabled	(on):	

postgres=# show logging_collector;
 logging_collector

 on
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set logging_collector = 'on';
ALTER SYSTEM

As	root,	restart	the	PostgreSQL	service	for	this	change	to	take	effect:

$ # service postgresql-9.5 restart
Stopping postgresql-9.5 service: [OK]
Starting postgresql-9.5 service: [OK]

Default	Value:	

on	in	the	PGDG	packages	

	

29	|	P a g e 	
	

CIS	Controls:	

6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	
and	various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	
record	logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	
Common	Event	Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	
format,	log	normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

	

30	|	P a g e 	
	

3.1.4 Ensure the log file destination directory is set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_directory	setting	specifies	the	destination	directory	for	log	files.	It	can	be	
specified	as	relative	to	the	cluster	data	directory	or	as	an	absolute	path.	log_directory	
should	be	set	according	to	your	organization's	logging	policy.	

Rationale:	

If	log_directory	is	not	set,	it	is	interpreted	as	the	absolute	path	'/'	and	PostgreSQL	will	
attempt	to	write	its	logs	there	(and	typically	fail	due	to	a	lack	of	permissions	to	that	
directory).	

Audit:	

Execute	the	following	SQL	statement	to	confirm	that	the	expected	logging	directory	is	
specified:	

postgres=# show log_directory;
 log_directory

 pg_log
(1 row)

Note:	This	shows	a	path	relative	to	cluster's	data	directory.	An	absolute	path	would	start	
with	a	/	like	the	following:	/var/log/pg_log

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_directory='logs';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

pg_log	

	

31	|	P a g e 	
	

CIS	Controls:	

6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	
and	various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	
record	logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	
Common	Event	Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	
format,	log	normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

	

32	|	P a g e 	
	

3.1.5 Ensure the filename pattern for log files is set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_filename	setting	specifies	the	filename	pattern	for	log	files.	The	value	for	
log_filename	should	match	your	organization's	logging	policy.	

The	value	is	treated	as	a	strftime	pattern,	so	%-escapes	can	be	used	to	specify	time-
varying	filenames.	The	supported	%-escapes	are	similar	to	those	listed	in	the	Open	Group's	
strftime	specification.	If	you	specify	a	filename	without	escapes,	you	should	plan	to	use	a	
log	rotation	utility	to	avoid	eventually	filling	the	partition	that	contains	log_directory.	If	
there	are	any	time-zone-dependent	%-escapes,	the	computation	is	done	in	the	zone	
specified	by	log_timezone.	Also,	the	system's	strftime	is	not	used	directly,	so	platform-
specific	(nonstandard)	extensions	do	not	work.	

If	CSV-format	output	is	enabled	in	log_destination,	.csv	will	be	appended	to	the	log	
filename.	(If	log_filename	ends	in	.log,	the	suffix	is	replaced	instead.)	

Rationale:	

If	log_filename	is	not	set,	then	the	value	of	log_directory	is	appended	to	an	empty	string	
and	PostgreSQL	will	fail	to	start	as	it	will	try	to	write	to	a	directory	instead	of	a	file.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	that	the	desired	pattern	is	set:	

postgres=# show log_filename;
 log_filename

 postgresql-%a.log
(1 row)	

	

33	|	P a g e 	
	

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_filename='postgresql-%Y%m%d.log';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

The	default	is	postgresql-%a.log	for	PGDG	packages,	which	creates	a	new	logfile	for	each	
day	of	the	week	(e.g.,	postgresql-Mon.log,	postgresql-Tue.log).	

References:	

1. http://man7.org/linux/man-pages/man3/strftime.3.html	

CIS	Controls:	

6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	
and	various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	
record	logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	
Common	Event	Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	
format,	log	normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

	

34	|	P a g e 	
	

3.1.6 Ensure the log file permissions are set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_file_mode	setting	determines	the	file	permissions	for	log	files	when	
logging_collector	is	enabled.	The	parameter	value	is	expected	to	be	a	numeric	mode	
specification	in	the	form	accepted	by	the	chmod	and	umask	system	calls.	(To	use	the	
customary	octal	format,	the	number	must	start	with	a	0	(zero).)	The	permissions	should	be	
set	to	allow	only	the	necessary	access	to	authorized	personnel.	In	most	cases	the	best	
setting	is	0600,	so	that	only	the	server	owner	can	read	or	write	the	log	files.	The	other	
commonly	useful	setting	is	0640,	allowing	members	of	the	owner's	group	to	read	the	files,	
although	to	make	use	of	that,	you	will	need	to	alter	the	log_directory	setting	to	store	the	
log	files	outside	the	cluster	data	directory.	

Rationale:	

Log	files	often	contain	sensitive	data.	Allowing	unnecessary	access	to	log	files	may	
inadvertently	expose	sensitive	data	to	unauthorized	personnel.	

Audit:	

Execute	the	following	SQL	statement	to	verify	that	the	setting	is	consistent	with	
organizational	logging	policy:	

postgres=# show log_file_mode;
 log_file_mode

 0600
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(with	the	example	
assuming	a	desired	value	of	0600):	

postgres=# alter system set log_file_mode = '0600';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

	

35	|	P a g e 	
	

Default	Value:	

0600	

CIS	Controls:	

14.4	Protect	Information	With	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	
enforce	the	principle	that	only	authorized	individuals	should	have	access	to	the	
information	based	on	their	need	to	access	the	information	as	a	part	of	their	
responsibilities.	

	

36	|	P a g e 	
	

3.1.7 Ensure 'log_truncate_on_rotation' is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_truncate_on_rotation	setting	when	logging_collector	is	enabled	
causes	PostgreSQL	to	truncate	(overwrite)	existing	log	files	with	the	same	name	during	log	
rotation	instead	of	appending	them.	For	example,	using	this	setting	in	combination	with	a	
log_filename	setting	value	like	postgresql-%H.log	would	result	in	generating	24	hourly	
log	files	and	then	cyclically	overwriting	them:	

postgresql-00.log
postgresql-01.log
[...]
postgresql-23.log

Note:	Truncation	will	occur	only	when	a	new	file	is	being	opened	due	to	time-based	
rotation,	not	during	server	startup	or	size-based	rotation.	

Rationale:	

If	this	setting	is	disabled,	pre-existing	log	files	will	be	appended	to	if	log_filename	is	
configured	in	such	a	way	that	static	names	are	generated.	

Enabling	or	disabling	the	truncation	should	only	be	decided	when	also	considering	the	
value	of	log_filename	and	log_rotation_age/log_rotation_size.	Some	examples	to	
illustrate	the	interaction	between	these	settings:	

truncation is moot, as each rotation gets a unique filename (postgresql-
20180605.log)
log_truncate_on_rotation = on
log_filename = 'postgresql-%Y%m%d.log'
log_rotation_age = '1d'
log_rotation_size = 0
truncation every hour, losing log data
log_truncate_on_rotation = on
log_filename = 'postgresql-%Y%m%d.log'
log_rotation_age = '1h'
log_rotation_size = 0
truncation is indeterminate (how quickly are you generating 100M of log
data)
log_truncate_on_rotation = on
log_filename = 'postgresql-%Y%m%d.log'
log_rotation_age = '0'
log_rotation_size = '100M'

	

37	|	P a g e 	
	

Audit:	

Execute	the	following	SQL	statement	to	verify	how	log_truncate_on_rotation	is	set:	

postgres=# show log_truncate_on_rotation;
 log_truncate_on_rotation

 on
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_truncate_on_rotation = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

'on'	

Notes:	

Be	sure	to	consider	you	organizations	logging	retention	policies	and	the	use	of	any	external	
log	consumption	tools	before	deciding	if	truncation	should	be	enabled	or	disabled.	

CIS	Controls:	

6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	
intervals.	The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

	

38	|	P a g e 	
	

3.1.8 Ensure the maximum log file lifetime is set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

When	logging_collector	is	enabled,	the	log_rotation_age	parameter	determines	the	
maximum	lifetime	of	an	individual	log	file.	After	that	many	minutes	have	elapsed,	a	new	log	
file	will	be	created	via	automatic	log	file	rotation.	Current	best	practices	advise	log	rotation	
at	least	daily,	but	your	organization's	logging	policy	should	dictate	your	rotation	schedule.	

Rationale:	

Log	rotation	is	a	standard	best	practice	for	log	management.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	log	rotation	age	is	set	to	an	acceptable	
value:	

postgres=# show log_rotation_age;
 log_rotation_age

 1d

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	setting	it	
to	one	hour):	

postgres=# alter system set log_rotation_age='1h';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

1d	(one	day)	 	

	

39	|	P a g e 	
	

CIS	Controls:	

6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	
intervals.	The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

	

40	|	P a g e 	
	

3.1.9 Ensure the maximum log file size is set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_rotation_size	setting	determines	the	maximum	size	in	kilobytes	of	an	individual	
log	file.	Once	the	maximum	size	is	reached,	automatic	log	file	rotation	will	occur.	

Rationale:	

If	this	is	set	to	zero,	size-triggered	creation	of	new	log	files	is	disabled.	This	will	prevent	
automatic	log	file	rotation	when	files	become	too	large,	which	could	put	log	data	at	
increased	risk	of	loss.	

Audit:	

Execute	the	following	SQL	statement	to	verify	that	log_rotation_size	is	set	in	compliance	
with	the	organization's	logging	policy:	

postgres=# show log_rotation_size;
 log_rotation_size

 1GB
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	setting	it	
to	1GB):	

postgres=# alter system set log_rotation_size = '1GB';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

0	

	 	

	

41	|	P a g e 	
	

CIS	Controls:	

6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	To	Loss	(i.e.	rotation/archive)	
Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	
generated	on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	
intervals.	The	logs	must	be	archived	and	digitally	signed	on	a	periodic	basis.	

	

42	|	P a g e 	
	

3.1.10 Ensure the correct syslog facility is selected (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	syslog_facility	setting	specifies	the	syslog	"facility"	to	be	used	when	syslog	is	
enabled.	You	can	choose	from	any	of	the	'local'	facilities	(LOCAL0	-	LOCAL7).	Your	
organization's	logging	policy	should	dictate	which	facility	to	use	based	on	the	syslog	
daemon	in	use.	

Rationale:	

If	not	set	to	the	appropriate	facility,	the	PostgreSQL	log	messages	may	be	intermingled	with	
other	applications'	log	messages,	incorrectly	routed,	or	potentially	dropped	(depending	on	
your	syslog	configuration).	

Audit:	

Execute	the	following	SQL	statement	and	verify	that	the	correct	facility	is	selected:	

postgres=# show syslog_facility;
 syslog_facility

 local0
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	setting	it	
to	the	LOCAL1	facility):	

postgres=# alter system set syslog_facility = 'LOCAL1';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

LOCAL0	 	

	

43	|	P a g e 	
	

References:	

1. https://tools.ietf.org/html/rfc3164#section-4.1.1	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

44	|	P a g e 	
	

3.1.11 Ensure the program name for PostgreSQL syslog messages is
correct (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	syslog_ident	setting	specifies	the	program	name	used	to	identify	PostgreSQL	
messages	in	syslog	logs.	An	example	of	a	possible	program	name	is	"postgres".	

Rationale:	

If	this	is	not	set	correctly,	it	may	be	difficult	or	impossible	to	distinguish	PostgreSQL	
messages	from	other	messages	in	syslog	logs.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	program	name	is	set	correctly:	

postgres=# show syslog_ident;
 syslog_ident

 postgres
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	
assuming	a	program	name	of	"pg95"):	

postgres=# alter system set syslog_ident = 'pg95';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

postgres	

References:	

1. https://tools.ietf.org/html/rfc3164#section-4.1.3	

	

45	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

46	|	P a g e 	
	

3.1.12 Ensure the correct messages are sent to the database client (Not
Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	client_min_messages	setting	specifies	the	message	levels	that	are	sent	to	the	database	
client	(not	the	logs).	Each	level	includes	all	the	levels	that	follow	it.	The	later	the	level,	the	
fewer	messages	are	sent.	NOTICE	is	generally	accepted	as	the	best	practice	for	this	setting.	

Valid	values	are:	

• DEBUG5	
• DEBUG4	
• DEBUG3	
• DEBUG2	
• DEBUG1	
• LOG	
• NOTICE	
• WARNING	
• ERROR	
• FATAL	
• PANIC	

Note:	LOG	has	a	different	rank	here	than	in	log_min_messages.	

Rationale:	

If	this	is	not	set	correctly,	the	database	client	may	receive	too	many	messages	or	too	few	
messages.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	correct:	

postgres=# show client_min_messages;
 client_min_messages

 notice
(1 row)	

	

47	|	P a g e 	
	

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	the	setting	(in	this	example,	to	
notice):	

postgres=# alter system set client_min_messages = 'notice';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

NOTICE	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

48	|	P a g e 	
	

3.1.13 Ensure the correct messages are written to the server log (Not
Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_min_messages	setting	specifies	the	message	levels	that	are	written	to	the	server	
log.	Each	level	includes	all	the	levels	that	follow	it.	The	later	the	level,	the	fewer	messages	
are	sent.	

Valid	values	are:	

• DEBUG5	
• DEBUG4	
• DEBUG3	
• DEBUG2	
• DEBUG1	
• INFO	
• NOTICE	
• WARNING	
• ERROR	
• LOG	
• FATAL	
• PANIC	

Note:	LOG	has	a	different	rank	here	than	in	client_min_messages.	

WARNING	is	considered	the	best	practice	unless	indicated	otherwise	by	your	organization's	
logging	policy.	

Rationale:	

If	this	is	not	set	to	the	correct	value,	too	many	messages	or	too	few	messages	may	be	
written	to	the	server	log.	 	

	

49	|	P a g e 	
	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	correct:	

postgres=# show log_min_messages;
 log_min_messages

 warning
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting	(in	this	
example,	to	set	it	to	warning):	

postgres=# alter system set log_min_messages = 'warning';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

WARNING	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

50	|	P a g e 	
	

3.1.14 Ensure the correct SQL statements generating errors are
recorded (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_min_error_statement	setting	causes	all	SQL	statements	generating	errors	at	or	
above	the	specified	severity	level	to	be	recorded	in	the	server	log.	Each	level	includes	all	
the	levels	that	follow	it.	The	later	the	level,	the	fewer	messages	are	recorded.	Valid	values	
are:	

• DEBUG5	
• DEBUG4	
• DEBUG3	
• DEBUG2	
• DEBUG1	
• INFO	
• NOTICE	
• WARNING	
• ERROR	
• LOG	
• FATAL	
• PANIC	

Note:	To	effectively	turn	off	logging	of	failing	statements,	set	this	parameter	to	PANIC.	

ERROR	is	considered	the	best	practice	setting.	Changes	should	only	be	made	in	accordance	
with	your	organization's	logging	policy.	

Rationale:	

If	this	is	not	set	to	the	correct	value,	too	many	SQL	statements	or	too	few	SQL	statements	
may	be	written	to	the	server	log.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_min_error_statement;
 log_min_error_statement

 error
(1 row)

	

51	|	P a g e 	
	

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting	(in	the	
example,	to	error):	

postgres=# alter system set log_min_error_statement = 'error';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

ERROR	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

52	|	P a g e 	
	

3.1.15 Ensure 'log_min_duration_statement' is disabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_min_duration_statement	setting	specifies	the	minimum	execution	time	for	a	
statement	at	which	the	statement	will	be	logged.	For	example,	if	you	set	it	to	250ms,	then	all	
SQL	statements	that	run	250ms	or	longer	will	be	logged.	Setting	it	to	-1	disables	this	feature,	
which	is	recommended.	Setting	it	to	0	records	all	statements	regardless	of	duration.	

Rationale:	

Logging	of	SQL	statements	may	include	sensitive	information	that	should	not	be	recorded	
in	logs.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	correct:	

postgres=# show log_min_duration_statement ;
 log_min_duration_statement

 -1
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting	(in	this	
example,	to	-1):	

postgres=# alter system set log_min_duration_statement = -1;
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

-1	

	

53	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

54	|	P a g e 	
	

3.1.16 Ensure 'debug_print_parse' is disabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	debug_print_parse	setting	enables	printing	the	resulting	parse	tree	for	each	executed	
query.	These	messages	are	emitted	at	the	LOG	message	level.	Unless	directed	otherwise	by	
your	organization's	logging	policy,	it	is	recommended	this	setting	be	disabled	by	setting	it	
to	off.	

Rationale:	

Enabling	any	of	the	DEBUG	printing	variables	may	cause	the	logging	of	sensitive	information	
that	would	otherwise	be	omitted	based	on	the	configuration	of	the	other	logging	settings.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	correct:	

postgres=# show debug_print_parse;
 debug_print_parse

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set debug_print_parse='off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

55	|	P a g e 	
	

3.1.17 Ensure 'debug_print_rewritten' is disabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	debug_print_rewritten	setting	enables	printing	the	query	rewriter	output	for	each	
executed	query.	These	messages	are	emitted	at	the	LOG	message	level.	Unless	directed	
otherwise	by	your	organization's	logging	policy,	it	is	recommended	this	setting	be	disabled	
by	setting	it	to	off.	

Rationale:	

Enabling	any	of	the	DEBUG	printing	variables	may	cause	the	logging	of	sensitive	information	
that	would	otherwise	be	omitted	based	on	the	configuration	of	the	other	logging	settings.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	disabled:	

postgres=# show debug_print_rewritten;
 debug_print_rewritten

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	disable	this	setting:	

postgres=# alter system set debug_print_rewritten = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

56	|	P a g e 	
	

3.1.18 Ensure 'debug_print_plan' is disabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	debug_print_rewritten	setting	enables	printing	the	execution	plan	for	each	executed	
query.	These	messages	are	emitted	at	the	LOG	message	level.	Unless	directed	otherwise	by	
your	organization's	logging	policy,	it	is	recommended	this	setting	be	disabled	by	setting	it	
to	off.	

Rationale:	

Enabling	any	of	the	DEBUG	printing	variables	may	cause	the	logging	of	sensitive	information	
that	would	otherwise	be	omitted	based	on	the	configuration	of	the	other	logging	settings.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	disabled:	

postgres=# show debug_print_plan ;
 debug_print_plan

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	disable	this	setting:	

postgres=# alter system set debug_print_plan = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

57	|	P a g e 	
	

3.1.19 Ensure 'debug_pretty_print' is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	debug_pretty_print	indents	the	messages	produced	by	debug_print_parse,	
debug_print_rewritten,	or	debug_print_plan.	

Rationale:	

If	this	setting	is	disabled,	the	"compact"	format	is	used	instead,	significantly	reducing	
readability	of	the	DEBUG	statement	log	messages.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	enabled:	

postgres=# show debug_pretty_print ;
 debug_pretty_print

 on
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	enable	this	setting:	

postgres=# alter system set debug_pretty_print = 'on';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

on	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

58	|	P a g e 	
	

3.1.20 Ensure 'log_checkpoints' is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_checkpoints	setting	causes	checkpoints	and	restartpoints	to	be	logged	
in	the	server	log.	Some	statistics	are	included	in	the	log	messages,	including	the	number	of	
buffers	written	and	the	time	spent	writing	them.	

Rationale:	

Enabling	the	logging	of	checkpoints	is	the	easiest	method	of	tracking	both	the	frequency	
and	duration	of	the	checkpoint	operations.	

Audit:	

Execute	the	following	SQL	statement	to	confirm	the	setting	is	enabled:	

postgres=# show log_checkpoints ;
 log_checkpoints

 on
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	enable	this	setting:	

postgres=# alter system set log_checkpoints = 'on';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

59	|	P a g e 	
	

3.1.21 Ensure 'log_connections' is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_connections	setting	causes	each	attempted	connection	to	the	server	to	
be	logged,	as	well	as	successful	completion	of	client	authentication.	This	parameter	cannot	
be	changed	after	session	start.	

Rationale:	

PostgreSQL	does	maintain	an	internal	record	of	attempted	connections	to	the	database	for	
later	auditing.	It	is	only	be	enabling	the	logging	of	these	attempts	that	one	can	determine	if	
unexpected	attempts	are	being	made.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	enabled:	

postgres=# show log_connections ;
 log_connections

 on
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	enable	this	setting:	

postgres=# alter system set log_connections = 'on';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

As	root,	restart	the	PostgreSQL	service:

[root@localhost ~]# service postgresql-9.5 restart
Stopping postgresql-9.5 service: [OK]
Starting postgresql-9.5 service: [OK]

Default	Value:	

off	

	

60	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

61	|	P a g e 	
	

3.1.22 Ensure 'log_disconnections' is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_disconnections	setting	logs	the	end	of	each	session,	including	session	
duration.	This	parameter	cannot	be	changed	after	session	start.	

Rationale:	

PostgreSQL	does	not	maintain	the	beginning	or	ending	of	a	connection	internally	for	later	
review.	It	is	only	by	enabling	the	logging	of	these	that	one	can	examine	connections	for	
failed	attempts,	'over	long'	duration,	or	other	anomalies.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	enabled:	

postgres=# show log_disconnections ;
 log_disconnections

 on
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	enable	this	setting:	

postgres=# alter system set log_disconnections = 'on';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

As	root,	restart	the	PostgreSQL	service:

[root@localhost ~]# service postgresql-9.5 restart
Stopping postgresql-9.5 service: [OK]
Starting postgresql-9.5 service: [OK]

Default	Value:	

off	

	

62	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

63	|	P a g e 	
	

3.1.23 Ensure 'log_duration' is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_duration	setting	causes	the	duration	of	each	completed	SQL	statement	to	
be	logged.	For	clients	using	the	extended	query	protocol,	durations	of	the	Parse,	Bind,	and	
Execute	steps	are	logged	independently.	

Rationale:	

By	logging	the	duration	of	statements,	it	is	easy	to	identify	both	non-performant	queries	as	
well	as	possible	DoS	attempts	(excessively	long	running	queries	may	be	attempts	at	
resource	starvation).	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	enabled:	

postgres=# show log_duration ;
 log_duration

 on
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting:	

postgres=# alter system set log_duration = `on`;
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

64	|	P a g e 	
	

3.1.24 Ensure 'log_error_verbosity' is set correctly (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	`log_error_verbosity	setting	specifies	the	verbosity	(amount	of	detail)	of	logged	
messages.	Valid	values	are:	

• TERSE		
• DEFAULT		
• VERBOSE	with	each	containing	the	fields	of	the	level	above	it	as	well	as	additional	

fields.	

TERSE	excludes	the	logging	of	DETAIL,	HINT,	QUERY,	and	CONTEXT	error	information.	

VERBOSE	output	includes	the	SQLSTATE	error	code	and	the	source	code	file	name,	function	
name,	and	line	number	that	generated	the	error.	

The	appropriate	value	should	be	set	based	on	your	organization's	logging	policy.	

Rationale:	

If	this	is	not	set	to	the	correct	value,	too	many	details	or	too	few	details	may	be	logged.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_error_verbosity ;
 log_error_verbosity

 default
(1 row)	

	

65	|	P a g e 	
	

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting	(in	this	
example,	to	verbose):	

postgres=# alter system set log_error_verbosity = 'verbose';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

DEFAULT	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

66	|	P a g e 	
	

3.1.25 Ensure 'log_hostname' is set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_hostname	setting	causes	the	hostname	of	the	connecting	host	to	be	logged	
in	addition	to	the	host's	IP	address	for	connection	log	messages.	Disabling	the	setting	
causes	only	the	connecting	host's	IP	address	to	be	logged,	and	not	the	hostname.	Unless	
your	organization's	logging	policy	requires	hostname	logging,	it	is	best	to	disable	this	
setting.	

Rationale:	

Depending	on	your	hostname	resolution	setup,	enabling	this	setting	might	impose	a	non-
negligible	performance	penalty.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_hostname;
 log_hostname

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting	(in	this	example,	to	off):	

postgres=# alter system set log_hostname='off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

	 	

	

67	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

68	|	P a g e 	
	

3.1.26 Ensure 'log_line_prefix' is set correctly (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_line_prefix	setting	specifies	a	printf-style	string	that	is	prefixed	to	each	log	line.	
If	blank,	no	prefix	is	used.	You	should	configure	this	as	recommended	by	the	pgBadger	
development	team	unless	directed	otherwise	by	your	organization's	logging	policy.	The	
default	value	is	< %m >.	

%	characters	begin	"escape	sequences"	that	are	replaced	with	status	information	as	
outlined	below.	Unrecognized	escapes	are	ignored.	Other	characters	are	copied	straight	to	
the	log	line.	Some	escapes	are	only	recognized	by	session	processes	and	will	be	treated	as	
empty	by	background	processes	such	as	the	main	server	process.	Status	information	may	
be	aligned	either	left	or	right	by	specifying	a	numeric	literal	after	the	%	and	before	the	
option.	A	negative	value	will	cause	the	status	information	to	be	padded	on	the	right	with	
spaces	to	give	it	a	minimum	width,	whereas	a	positive	value	will	pad	on	the	left.	Padding	
can	be	useful	to	aid	human	readability	in	log	files.	

The	default	is	< %m >,	but	any	of	the	following	escape	sequences	can	be	used:	

Escape Effect Session only
%a Application name yes
%u User name yes
%d Database name yes
%r Remote host name or IP address, and remote port yes
%h Remote host name or IP address yes
%p Process ID no
%t Time stamp without milliseconds no
%m Time stamp with milliseconds no
%i Command tag: type of session's current command yes
%e SQLSTATE error code no
%c Session ID: see below no
%l Number of the log line for each session
 or process, starting at 1 no
%s Process start time stamp no
%v Virtual transaction ID (backendID/localXID) no
%x Transaction ID (0 if none is assigned) no
%q Produces no output, but tells non-session
 processes to stop at this point in the string;
 ignored by session processes no
%% Literal %	

	

69	|	P a g e 	
	

Rationale:	

Properly	setting	log_line_prefix	allows	for	adding	additional	information	to	each	log	
entry	(such	as	the	user,	or	the	database).	Said	information	may	then	be	of	use	in	auditing	or	
security	reviews.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_line_prefix;
 log_line_prefix

 < %m >
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_line_prefix = '%t [%p]: [%l-1]
db=%d,user=%u,app=%a,client=%h';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

< %m >	

References:	

1. https://dalibo.github.io/pgbadger/index.html	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

70	|	P a g e 	
	

3.1.27 Ensure 'log_lock_waits' is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_lock_waits	setting	specifies	whether	a	log	message	is	produced	when	a	session	
waits	longer	than	deadlock_timeout	to	acquire	a	lock.	The	setting	should	be	enabled	(set	
to	on)	unless	otherwise	directed	by	your	organization's	logging	policy.	

Rationale:	

If	this	setting	is	disabled,	it	may	be	harder	to	determine	if	lock	waits	are	causing	poor	
performance	or	if	a	specially-crafted	SQL	is	attempting	to	starve	resources	through	holding	
locks	for	excessive	amounts	of	time.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_lock_waits ;
 log_lock_waits

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_lock_waits = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

71	|	P a g e 	
	

3.1.28 Ensure 'log_statement' is set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_statement	setting	specifies	the	types	of	SQL	statements	that	are	logged.	Valid	
values	are:	

• none	(off)	
• ddl		
• mod		
• all	(all	statements)	

It	is	recommended	this	be	set	to	ddl	unless	otherwise	directed	by	your	organization's	
logging	policy.	

ddl	logs	all	data	definition	statements,	such	as	CREATE,	ALTER,	and	DROP	statements.	

mod	logs	all	ddl	statements,	plus	data-modifying	statements	such	as	INSERT,	UPDATE,	DELETE,	
TRUNCATE,	and	COPY FROM.	PREPARE,	EXECUTE,	and	EXPLAIN ANALYZE	statements	are	also	
logged	if	their	contained	command	is	of	an	appropriate	type.	

For	clients	using	extended	query	protocol,	logging	occurs	when	an	Execute	message	is	
received,	and	values	of	the	Bind	parameters	are	included	(with	any	embedded	single-quote	
marks	doubled).	

Rationale:	

Setting	log_statement	to	align	with	your	organization's	security	and	logging	policies	
facilitates	later	auditing	and	review	of	database	activities.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_statement;
 log_statement

 ddl
(1 row)	

	

72	|	P a g e 	
	

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting:	

postgres=# alter system set log_statement='ddl';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

none	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

73	|	P a g e 	
	

3.1.29 Ensure all temporary files are logged (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Temporary	files	are	created	for	sorts,	hashes,	and	temporary	query	results	when	these	
operations	exceed	work_mem.	A	log	entry	is	made	for	each	temporary	file	when	it	is	deleted.	
Setting	log_temp_files	to	0	causes	all	temporary	file	information	to	be	logged,	while	
positive	values	log	only	files	whose	size	is	greater	than	or	equal	to	the	specified	number	of	
kilobytes.	A	value	of	-1	disables	temporary	file	information	logging.	

Unless	directed	otherwise	by	your	organization's	logging	policy,	you	should	set	this	to	0.	

Rationale:	

If	all	temporary	files	are	not	logged,	it	may	be	more	difficult	to	identify	potential	
performance	issues	that	may	be	either	poor	application	coding	or	deliberate	resource	
starvation	attempts.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_temp_files ;
 log_temp_files

 0
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting:	

postgres=# alter system set log_temp_files = 0;
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

-1	

	

74	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

75	|	P a g e 	
	

3.1.30 Ensure 'log_timezone' is set correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	log_timezone	setting	specifies	the	time	zone	to	use	in	timestamps	within	log	messages.	
This	value	is	cluster-wide,	so	that	all	sessions	will	report	timestamps	consistently.	Unless	
directed	otherwise	by	your	organization's	logging	policy,	set	this	to	either	GMT	or	UTC.	

Rationale:	

Log	entry	timestamps	should	be	configured	for	an	appropriate	timezone	as	defined	by	your	
organization's	logging	policy	to	ensure	a	lack	of	confusion	around	when	a	logged	event	
occurred.	

Audit:	

Execute	the	following	SQL	statement:	

postgres=# show log_timezone ;
 log_timezone

 GMT
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	to	remediate	this	setting:	

postgres=# alter system set log_timezone = 'GMT';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

GMT	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

76	|	P a g e 	
	

3.1.31 Ensure 'log_parser_stats' is disabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_parser_stats	setting	causes	parser	performance	statistics	to	be	written	
to	the	server	log.	This	is	a	crude	profiling	instrument,	similar	to	the	Unix	getrusage()	
operating	system	facility.	This	module	reports	per-module	statistics.	The	parser	
performance	statistics	logging	is	disabled	(off)	by	default	and	should	only	be	enabled	if	
directed	to	do	so	by	your	organization's	logging	policy.	

Rationale:	

The	logging	of	these	additional	statistics	when	not	mandated	by	your	organization's	
logging	policy	greatly	reduces	the	signal-to-noise	ratio	of	the	PostgreSQL	logs.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_parser_stats ;
 log_parser_stats

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting:	

postgres=# alter system set log_parser_stats = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

References:	

1. http://man7.org/linux/man-pages/man2/getrusage.2.html	

	

77	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

78	|	P a g e 	
	

3.1.32 Ensure 'log_planner_stats' is disabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_planner_stats	setting	causes	planner	performance	statistics	to	be	
written	to	the	server	log.	This	is	a	crude	profiling	instrument,	similar	to	the	Unix	
getrusage()	operating	system	facility.	This	module	reports	per-module	statistics.	The	
planner	performance	statistics	logging	is	disabled	(off)	by	default	and	should	only	be	
enabled	if	directed	to	do	so	by	your	organization's	logging	policy.	

Rationale:	

The	logging	of	these	additional	statistics	when	not	mandated	by	your	organization's	
logging	policy	greatly	reduces	the	signal-to-noise	ratio	of	the	PostgreSQL	logs.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_planner_stats ;
 log_planner_stats

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting:	

postgres=# alter system set log_planner_stats = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

References:	

1. http://man7.org/linux/man-pages/man2/getrusage.2.html	

	

79	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

80	|	P a g e 	
	

3.1.33 Ensure 'log_executor_stats' is disabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_executor_stats	setting	causes	executor	performance	statistics	to	be	
written	to	the	server	log.	This	is	a	crude	profiling	instrument,	similar	to	the	Unix	
getrusage()	operating	system	facility.	This	module	reports	per-module	statistics.	The	
executor	performance	statistics	logging	is	disabled	(off)	by	default	and	should	only	be	
enabled	if	directed	to	do	so	by	your	organization's	logging	policy.	

Rationale:	

The	logging	of	these	additional	statistics	when	not	mandated	by	your	organization's	
logging	policy	greatly	reduces	the	signal-to-noise	ratio	of	the	PostgreSQL	logs.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_executor_stats ;
 log_executor_stats

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting:	

postgres=# alter system set log_executor_stats = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

References:	

1. http://man7.org/linux/man-pages/man2/getrusage.2.html	

	

81	|	P a g e 	
	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

82	|	P a g e 	
	

3.1.34 Ensure 'log_statement_stats' is disabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Enabling	the	log_statement_stats	setting	causes	cumulative	performance	statistics	to	be	
written	to	the	server	log	for	each	query.	This	is	a	crude	profiling	instrument,	similar	to	the	
Unix	getrusage()	operating	system	facility.	This	reports	total	statement	statistics.	
Cumulative	performance	statistics	logging	is	disabled	(off)	by	default	and	should	only	be	
enabled	if	directed	to	do	so	by	your	organization's	logging	policy.	

Note:	log_statement_stats	cannot	be	enabled	together	with	any	of	the	per-module	
options.	

Rationale:	

The	logging	of	these	additional	statistics	when	not	mandated	by	your	organization's	
logging	policy	greatly	reduces	the	signal-to-noise	ratio	of	the	PostgreSQL	logs.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	setting	is	correct:	

postgres=# show log_statement_stats ;
 log_statement_stats

 off
(1 row)

Remediation:	

Execute	the	following	SQL	statement(s)	as	superuser	to	remediate	this	setting:	

postgres=# alter system set log_statement_stats = 'off';
ALTER SYSTEM
postgres=# select pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Default	Value:	

off	

	

83	|	P a g e 	
	

References:	

1. http://man7.org/linux/man-pages/man2/getrusage.2.html	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

84	|	P a g e 	
	

3.2 Ensure the PostgreSQL Audit Extension (pgAudit) is enabled (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	PostgreSQL	Audit	Extension	(pgAudit)	provides	detailed	session	and/or	object	audit	
logging	via	the	standard	PostgreSQL	logging	facility.	The	goal	of	pgAudit	is	to	provide	
PostgreSQL	users	with	the	capability	to	produce	audit	logs	often	required	to	comply	with	
government,	financial,	or	ISO	certifications.	

Rationale:	

Basic	statement	logging	can	be	provided	by	the	standard	logging	facility	with	
log_statement = all.	This	is	acceptable	for	monitoring	and	other	uses	but	does	not	
provide	the	level	of	detail	generally	required	for	an	audit.	It	is	not	enough	to	have	a	list	of	
all	the	operations	performed	against	the	database,	it	must	also	be	possible	to	find	
particular	statements	that	are	of	interest	to	an	auditor.	The	standard	logging	facility	shows	
what	the	user	requested,	while	pgAudit	focuses	on	the	details	of	what	happened	while	the	
database	was	satisfying	the	request.	

When	logging	SELECT	and	DML	statements,	pgAudit	can	be	configured	to	log	a	separate	entry	
for	each	relation	referenced	in	a	statement.	No	parsing	is	required	to	find	all	statements	
that	touch	a	particular	table.	In	fact,	the	goal	is	that	the	statement	text	is	provided	primarily	
for	deep	forensics	and	should	not	be	required	for	an	audit.	

Audit:	

First,	as	the	database	administrator	(shown	here	as	"postgres"),	verify	pgaudit	is	enabled	
by	running	the	following	commands:	

postgres=# show shared_preload_libraries ;
 shared_preload_libraries

pgaudit
(1 row)

If	the	output	does	not	contain	"pgaudit",	this	is	a	finding.	
Next,	verify	that	desired	auditing	components	are	enabled:

postgres=# show audit.log;
ERROR: unrecognized configuration parameter "audit.log"

	

85	|	P a g e 	
	

	
If	the	output	does	not	contain	desired	auditing	components,	this	is	a	finding.	
The	list	below	summarizes	pgAudit.log	components:

• READ:	SELECT	and	COPY	when	the	source	is	a	relation	or	a	query.	
• WRITE:	INSERT,	UPDATE,	DELETE,	TRUNCATE,	and	COPY	when	the	destination	is	a	

relation.	
• FUNCTION:	Function	calls	and	DO	blocks.	
• ROLE:	Statements	related	to	roles	and	privileges:	GRANT,	REVOKE,	CREATE/ALTER/DROP

ROLE.	
• DDL:	All	DDL	that	is	not	included	in	the	ROLE	class.	
• MISC:	Miscellaneous	commands,	e.g.	DISCARD,	FETCH,	CHECKPOINT,	VACUUM.	

Remediation:	

The	following	instructions	assume	PostgreSQL	9.5	Community	Packages	are	installed	to	the	
/usr/pgsql-9.5/	directory	and	the	standard	contribution	modules	directory	exists	at	
/usr/pgsql-9.5/share/contrib/.	To	install	and	enable	pgAudit,	first	we	need	to	clone	the	
GitHub	repository	and	build	the	project	in	the	appropriate	directory:	

$ cd /usr/pgsql-9.5/share/contrib/
$ git clone https://github.com/pgaudit/pgaudit.git
$ cd ./pgaudit
$ PATH=/usr/pgsql-9.5/bin:$PATH
$ make USE_PGXS=1 install

pgaudit	is	now	built	and	ready	to	be	configured.Next	we	need	to	alter	the	postgresql.conf	
configuration	file	to	enable	pgaudit	as	an	extension	in	the	shared_preload_libraries	
parameter,	indicate	which	classes	of	statements	we	want	to	log	via	the	pgaudit.log	
parameter,	and	restart	the	PostgreSQL	service:

$ vi ${PGDATA}/postgresql.conf

Find	theshared_preload_libraries	entry,	and	add	'pgaudit'	to	it	(preserving	any	existing	
entries):

shared_preload_libraries = 'pgaudit'

OR

shared_preload_libraries = 'pgaudit,somethingelse'

Now,	add	a	newpgaudit-specific	entry:

for this example we are logging the following ddl and write operations
pgaudit.log='ddl,write'

	

86	|	P a g e 	
	

	
Restart	the	PostgreSQL	server	for	changes	to	take	affect:

[root@localhost ~]# service postgresql-9.5 restart
Stopping postgresql-9.5 service: [OK]
Starting postgresql-9.5 service: [OK]

Impact:	

Depending	on	settings,	it	is	possible	for	pgAudit	to	generate	an	enormous	volume	of	logging.	
Be	careful	to	determine	exactly	what	needs	to	be	audit	logged	in	your	environment	to	avoid	
logging	too	much.	

References:	

1. https://www.pgaudit.org/	

Notes:	

pgAudit	versions	relate	to	PostgreSQL	major	versions;	specifically,	pgAudit	v1.0.X	is	
intended	to	support	PostgreSQL	9.5.	Please	consult	the	pgAudit	documentation	for	
versioning	details.	

CIS	Controls:	

6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

	

87	|	P a g e 	
	

4 User Access and Authorization

The	capability	to	use	database	resources	at	a	given	level,	or	user	authorization	rules,	allows	
for	user	manipulation	of	the	various	parts	of	the	PostgreSQL	database.	These	
authorizations	must	be	structured	to	block	unauthorized	use	and/or	corruption	of	vital	
data	and	services	by	setting	restrictions	on	user	capabilities.	

4.1 Ensure sudo is configured correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

It	is	common	having	more	than	one	authorized	individual	administrating	the	PostgreSQL	
service.	It	is	also	quite	common	to	permit	login	privileges	to	individuals	on	a	PostgreSQL	
host	who	otherwise	are	not	authorized	to	access	the	server's	data	cluster	and	files.	
Administrating	the	PostgreSQL	data	cluster,	as	opposed	to	its	data,	is	to	be	accomplished	
via	a	localhost	login	of	a	regular	UNIX	user	account.	Access	to	the	postgres	superuser	
account	is	restricted	in	such	a	manner	as	to	interdict	unauthorized	access.	sudo	satisfies	the	
requirements	by	escalating	ordinary	user	account	privileges	as	the	PostgreSQL	RDBMS	
superuser.	

Rationale:	

Without	sudo,	there	would	not	be	capabilities	to	strictly	control	access	to	the	superuser	
account	and	to	securely	and	authoritatively	audit	its	use.	

Audit:	

Log	in	as	a	user	authorized	to	escalate	privileges	and	test	the	sudo	invocation	by	executing	
the	following:	

sudo su - postgres
[sudo] password for user1:
user1 is not in the sudoers file. This incident will be reported.

As	shown	above,	'user1'	has	not	been	added	to	the/etc/sudoers	file	or	made	a	member	of	
any	group	listed	in	the	/etc/sudoers	file.	Whereas:

sudo su - postgres
[sudo] password for user1:
postgres@localhost:~$

	

88	|	P a g e 	
	

	
shows	the	'user1'	user	is	configured	properly	for	sudo	access.

Remediation:	

As	superuser	root,	execute	the	command	visudo	to	edit	the	/etc/sudoers	file	so	the	
following	line	is	present:	

%pg_wheel ALL= /bin/su - postgres

	
Additionally,	all	user	accounts	needing	superuser	access	must	be	members	of	the	group	
pg_wheel.	You	can	check	by	executing	something	similar	to	the	following	example:	

groups <username>

References:	

1. https://www.sudo.ws/man/1.8.15/sudo.man.html	
2. https://www.sudo.ws/man/1.8.17/visudo.man.html	
3. http://man7.org/linux/man-pages/man1/groups.1.html	

CIS	Controls:	

5.8	Administrators	Should	Not	Directly	Log	In	To	A	System	(i.e.	use	RunAs/sudo)	
Administrators	should	be	required	to	access	a	system	using	a	fully	logged	and	non-
administrative	account.	Then,	once	logged	on	to	the	machine	without	administrative	
privileges,	the	administrator	should	transition	to	administrative	privileges	using	tools	
such	as	Sudo	on	Linux/UNIX,	RunAs	on	Windows,	and	other	similar	facilities	for	other	
types	of	systems.	

	

89	|	P a g e 	
	

4.2 Ensure valid public keys are installed (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Valid	SSH	public/private	key	pairs	should	be	installed.	

Rationale:	

The	most	secure	mechanism	for	management	is	to	log	in	locally	into	the	UNIX	account	that	
controls	and	maintains	the	server's	environment	with	an	SSH	key	and	use	the	Command	
Line	Interface	(CLI)	psql.	SSH	keys	have	other	advantages	too;	it	is	simple	to	add	and	
remove	user	authorization,	it	eliminates	the	redundant	typing	of	passwords,	and	it	enables	
administrating	large	number	of	servers	from	a	centralized	host	using	simple	CLI	scripts.	

Audit:	

Assuming	one	has	previously	created	an	SSH	key	pair,	you	must	confirm	that	the	public	key	
is	already	installed	in	the	remote	host's	$HOME/.ssh/authorized_keys	file.	

	It	is	understood	that	the	SSH	server	on	the	remote	host	has	been	installed	and	configured	
to	accept	connections	for	the	postgres	UNIX	account.	

A	successful	login	to	the	remote	host's	postgres	UNIX	account	via	SSH	keys	should	return	a	
shell	prompt	without	prompting	for	a	password.	Here	is	an	example	login	attempt	using	the	
SSH	cli	in	a	terminal	executed	from	your	workstation:	

$ hostname -s
dbmaster
$ ssh postgres@<remote host> hostname -s
dbslave

Failure	to	login	(as	indicated	by	Permission denied (publickey,gssapi-keyex,gssapi-
with-mic,password),	ssh: connect to host <host> port 22: Connection refused,	or	
similar	messages)	may	be	explained	by	issues	other	than	one's	public	key	not	being	present	
on	the	remote	host.	Suffice	to	say	that	it	is	beyond	the	scope	of	this	documentation	to	debug	
Failures.	There	is	further,	comprehensive	documentation	available	online.	

Remediation:	

For	demonstration	purposes,	the	following	example	highlights	the	various	issues	one	must	
consider	and	is	just	one	of	many	methods	that	can	be	used	to	install	and	use	a	public	SSH	

	

90	|	P a g e 	
	

key.	It	is	recommended	that	a	configuration	management	tool,	such	as	Puppet,	be	used	as	
part	of	a	larger,	and	automated,	provisioning	process	where	there	are	many	DBAs	
authorized	to	administrate	multiple	servers.	

After	creating	your	SSH	public/private	key	pair,	login	as	root	on	the	PostgreSQL	server	and	
assign	a	temporary	password	to	the	postgres	user	account.	

Copy	the	SSH	public	key	from	your	key	pair	to	the	PostgreSQL	server.	This	step	will	prompt	
you	for	the	temporary	password	you	set	above:	

ssh -copy -id -i $HOME/.ssh/id_rsa.pub postgres@<remote host>

Now	that	your	SSH	public	key	is	in	place,	test	that	you	can	SSH	to	the	PostgreSQL	server	
without	being	prompted	for	a	password:	

ssh postgres@<remote host>

Upon	successful	login	without	being	prompted	for	a	password,	one	can	now	lock	the	
postgres	account	to	prevent	future	logins	via	password:	

passwd -l postgres

	
New	public	keys	can	be	added	by	editing	the	postgres	account's	authorization	file	directly:	

ssh postgres@<remote host>
vim $HOME/.ssh/authorized_keys

Alternatively,	another	implementation	would	be	to	add	the	public	key	to	one's	own	
personal	account	on	the	remote	host	and	then	sudo	into	postgres.	Added	security	is	
implied	because	you	would	need	to	supply	your	account	password:	

ssh -copy -id -i $HOME/.ssh/id_rsa.pub <remote host>
ssh <remote host>
sudo su - postgres

References:	

1. http://man7.org/linux/man-pages/man1/ssh.1.html	
2. http://man7.org/linux/man-pages/man1/ssh-keygen.1.html	
3. https://linux.die.net/man/1/ssh-copy-id	
4. http://man7.org/linux/man-pages/man1/passwd.1.html	
5. http://man7.org/linux/man-pages/man1/scp.1.html	
6. https://linux.die.net/man/1/rsync	
7. https://puppet.com/	

	

91	|	P a g e 	
	

Notes:	

Due	to	the	complexity	of	SSH,	this	recommendation	must	be	considered	only	as	a	starting	
point.	

CIS	Controls:	

3.4	Use	Only	Secure	Channels	For	Remote	System	Administration	
Perform	all	remote	administration	of	servers,	workstation,	network	devices,	and	
similar	equipment	over	secure	channels.	Protocols	such	as	telnet,	VNC,	RDP,	or	others	
that	do	not	actively	support	strong	encryption	should	only	be	used	if	they	are	
performed	over	a	secondary	encryption	channel,	such	as	SSL,	TLS	or	IPSEC.	

	

92	|	P a g e 	
	

4.3 Ensure excessive administrative privileges are revoked (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

With	respect	to	PostgreSQL	administrative	SQL	commands,	only	superusers	should	have	
elevated	privileges.	PostgreSQL	regular	or	application	users	should	not	possess	the	ability	
to	create	roles,	create	new	databases,	manage	replication,	or	perform	any	other	action	
deemed	privileged	for	a	superuser	account.	Typically,	regular	users	should	only	be	granted	
the	minimal	set	of	privileges	commensurate	with	managing	the	application:	

• DDL	(create	table,	create	view,	create	index,	etc.)	
• DML	(select,	insert,	update,	delete)	

Rationale:	

By	not	restricting	global	administrative	commands	to	superusers	only,	regular	users	
granted	excessive	privileges	may	execute	administrative	commands	with	unintended	and	
undesirable	results.	

Audit:	

First,	inspect	the	privileges	granted	to	the	database	superuser	(identified	here	as	postgres)	
using	the	display	command	psql -c "\du postgres"	to	establish	a	baseline	for	granted	
administrative	privileges.	Based	on	the	output	below,	the	postgres	superuser	can	create	
roles,	create	databases,	manage	replication,	and	bypass	row	level	security:	

$ psql -c "\du postgres"
 List of roles
Role name | Attributes | Member of
----------+---+-----------
postgres | Superuser, Create role, Create DB, Replication, | {}
 | Bypass RLS |

Now,	let's	inspect	the	same	information	for	a	mock	regular	user	calledappuser	using	the	
display	command	psql -c "\du appuser".	The	output	confirms	that	regular	user	appuser	
has	the	same	elevated	privileges	as	system	administrator	user	postgres.	This	is	a	finding.	 	

	

93	|	P a g e 	
	

$ psql -c "\du appuser"
 List of roles
Role name | Attributes | Member of
----------+---+-----------
appuser | Superuser, Create role, Create DB, Replication, | {}
 | Bypass RLS |

While	this	example	demonstrated	excessive	administrative	privileges	granted	to	a	single	
user,	a	comprehensive	audit	should	be	conducted	to	inspect	all	database	users	for	excessive	
administrative	privileges.	This	can	be	accomplished	via	either	of	the	commands	below.

$ psql -c "\du *"
$ psql -c "select * from pg_user order by usename"

Remediation:	

If	any	regular	or	application	users	have	been	granted	excessive	administrative	rights,	those	
privileges	should	be	removed	immediately	via	the	PostgreSQL	ALTER ROLE	SQL	command.	
Using	the	same	example	above,	the	following	SQL	statements	revoke	all	unnecessary	
elevated	administrative	privileges	from	the	regular	user	appuser:	

$ psql -c "ALTER ROLE appuser NOSUPERUSER;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOCREATEROLE;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOCREATEDB;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOREPLICATION;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOBYPASSRLS;"
ALTER ROLE
$ psql -c "ALTER ROLE appuser NOINHERIT;"
ALTER ROLE

Verify	the	appuser	now	passes	your	check	by	having	no	defined	Attributes:

$ psql -c "\du appuser"
 List of roles
Role name | Attributes | Member of
----------+------------+-----------
appuser | | {}

References:	

1. https://www.postgresql.org/docs/current/static/sql-revoke.html	
2. https://www.postgresql.org/docs/current/static/sql-createrole.html	
3. https://www.postgresql.org/docs/current/static/sql-alterrole.html	 	

	

94	|	P a g e 	
	

CIS	Controls:	

5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	
are	required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	
functions	and	monitor	for	anomalous	behavior.	

	

95	|	P a g e 	
	

4.4 Ensure excessive function privileges are revoked (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

In	certain	situations,	to	provide	required	functionality,	PostgreSQL	needs	to	execute	
internal	logic	(stored	procedures,	functions,	triggers,	etc.)	and/or	external	code	modules	
with	elevated	privileges.	However,	if	the	privileges	required	for	execution	are	at	a	higher	
level	than	the	privileges	assigned	to	organizational	users	invoking	the	functionality	
applications/programs,	those	users	are	indirectly	provided	with	greater	privileges	than	
assigned	by	their	organization.	This	is	known	as	privilege	elevation.	Privilege	elevation	
must	be	utilized	only	where	necessary.	Execute	privileges	for	application	functions	should	
be	restricted	to	authorized	users	only.	

Rationale:	

Ideally,	all	application	source	code	should	be	vetted	to	validate	interactions	between	the	
application	and	the	logic	in	the	database,	but	this	is	usually	not	possible	or	feasible	with	
available	resources	even	if	the	source	code	is	available.	The	DBA	should	attempt	to	obtain	
assurances	from	the	development	organization	that	this	issue	has	been	addressed	and	
should	document	what	has	been	discovered.	The	DBA	should	also	inspect	all	application	
logic	stored	in	the	database	(in	the	form	of	functions,	rules,	and	triggers)	for	excessive	
privileges.	

Audit:	

Functions	in	PostgreSQL	can	be	created	with	the	SECURITY DEFINER	option.	When	
SECURITY DEFINER	functions	are	executed	by	a	user,	said	function	is	run	with	the	privileges	
of	the	user	who	created	it,	not	the	user	who	is	running	it.	

To	list	all	functions	that	have	'SECURITY	DEFINER',	run	the	following	SQL:	

$ sudo su - postgres
$ psql -c "SELECT nspname, proname, proargtypes, prosecdef, rolname,
proconfig FROM pg_proc p JOIN pg_namespace n ON p.pronamespace = n.oid JOIN
pg_authid a ON a.oid = p.proowner WHERE prosecdef OR NOT proconfig IS NULL;"

In	the	query	results,	a	prosecdef	value	of	`t`	on	a	row	indicates	that	that	function	uses	
privilege	elevation.	

If	elevation	of	PostgreSQL	privileges	is	utilized	but	not	documented,	this	is	a	finding.	

	

96	|	P a g e 	
	

If	elevation	of	PostgreSQL	privileges	is	documented,	but	not	implemented	as	described	in	
the	documentation,	this	is	a	finding.	

If	the	privilege-elevation	logic	can	be	invoked	in	ways	other	than	intended,	or	in	contexts	
other	than	intended,	or	by	subjects/principals	other	than	intended,	this	is	a	finding.

Remediation:	

Where	possible,	revoke	SECURITY DEFINER	on	PostgreSQL	functions.	To	change	a	SECURITY
DEFINER	function	to	SECURITY INVOKER,	run	the	following	SQL:	

$ sudo su - postgres
$ psql -c "ALTER FUNCTION [functionname] SECURITY INVOKER;"

If	it	is	not	possible	to	revoke	SECURITY DEFINER,	ensure	the	function	can	be	executed	by	
only	the	accounts	that	absolutely	need	such	functionality:

REVOKE EXECUTE ON FUNCTION delete_customer(integer,boolean) FROM appreader;
REVOKE

Confirm	that	the	appreader	user	may	no	longer	execute	the	function:

SELECT proname, proacl FROM pg_proc WHERE proname = 'delete_customer';
 proname | proacl
-----------------+--
 delete_customer | {=X/postgres,postgres=X/postgres,appwriter=X/postgres}
(1 row)

Based	on	output	above,	appreader=X/postgres	no	longer	exists	in	the	proacl	column	
results	returned	from	query	and	confirms	appreader	is	no	longer	granted	execute	privilege	
on	the	function.

References:	

1. https://www.postgresql.org/docs/current/static/catalog-pg-proc.html	
2. https://www.postgresql.org/docs/current/static/sql-grant.html	
3. https://www.postgresql.org/docs/current/static/sql-revoke.html	

CIS	Controls:	

5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	
are	required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	
functions	and	monitor	for	anomalous	behavior.	

	

97	|	P a g e 	
	

4.5 Ensure excessive DML privileges are revoked (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

DML	(insert,	update,	delete)	operations	at	the	table	level	should	be	restricted	to	only	
authorized	users.	PostgreSQL	manages	table	level	DML	permissions	via	the	GRANT	
statement.	

Rationale:	

Excessive	DML	grants	can	lead	to	unprivileged	users	changing	or	deleting	information	
without	proper	authorization.	

Audit:	

To	audit	excessive	DML	privileges,	take	an	inventory	of	all	users	define	in	the	cluster	using	
the	\du+ *	SQL	command,	as	well	as	all	tables	defined	in	the	database	using	the	\dt *.*	
SQL	command.	Furthermore,	the	intersection	matrix	of	tables	and	user	grants	can	be	
obtained	by	querying	system	catalogs	pg_tables	and	pg_user.	Note	that	in	PostgreSQL,	
users	are	defined	cluster-wide	across	all	databases,	while	schemas	and	tables	are	specific	
to	a	particular	database	in	a	multi-tenant	instance.	Therefore,	the	commands	below	should	
be	executed	for	each	defined	database	in	the	cluster.	With	this	information,	inspect	
database	table	grants	and	determine	if	any	are	excessive	for	defined	database	users.	

postgres=# -- display all users defined in the cluster
postgres=# \du+ *

postgres=# -- display all schema.tables created in current database
postgres=# \dt+ *.*

postgres=# -- query all tables and user grants in current database
postgres=# -- system catalogs information_schema and pg_catalog excluded
postgres=# select t.schemaname, t.tablename, u.usename,
 has_table_privilege(u.usename, t.tablename, 'select') as select,
 has_table_privilege(u.usename, t.tablename, 'insert') as insert,
 has_table_privilege(u.usename, t.tablename, 'update') as update,
 has_table_privilege(u.usename, t.tablename, 'delete') as delete
from pg_tables t, pg_user u
where t.schemaname not in ('information_schema','pg_catalog');

For	the	example	below,	we	illustrate	using	a	single	tablecustomer	and	two	application	
users	appwriter	and	appreader.	The	intention	is	for	appwriter	to	have	full	select,	insert,	
update,	delete	rights	and	for	appreader	to	only	have	select	rights.	We	can	query	these	

	

98	|	P a g e 	
	

privileges	with	the	example	below	using	the	has_table_privilege	function	and	filtering	
for	just	the	table	and	roles	in	question.

postgres=# select t.tablename, u.usename,
 has_table_privilege(u.usename, t.tablename, 'select') as select,
 has_table_privilege(u.usename, t.tablename, 'insert') as insert,
 has_table_privilege(u.usename, t.tablename, 'update') as update,
 has_table_privilege(u.usename, t.tablename, 'delete') as delete
from pg_tables t, pg_user u
where t.tablename = 'customer'
and u.usename in ('appwriter','appreader');

tablename | usename | select | insert | update | delete
----------+-----------+--------+--------+--------+--------
customer | appwriter | t | t | t | t
customer | appreader | t | t | t | t
(2 rows)

As	depicted,	both	users	have	full	privileges	for	the	customer	table.	This	is	a	finding.	
When	inspecting	database-wide	results	for	all	users	and	all	table	grants,	employ	a	
comprehensive	approach.	Collaboration	with	application	developers	is	paramount	to	
collectively	determine	only	those	database	users	that	require	specific	DML	privileges	on	
which	tables.

Remediation:	

If	a	given	database	user	has	been	granted	excessive	DML	privileges	for	a	given	database	
table,	those	privileges	should	be	revoked	immediately	using	the	revoke	SQL	command.	
Continuing	with	the	example	above,	remove	unauthorized	grants	for	appreader	user	using	
the	revoke	statement	and	verify	the	Boolean	values	are	false.	

postgres=# REVOKE INSERT, UPDATE, DELETE ON TABLE customer FROM appreader;
REVOKE

postgres=# select t.tablename, u.usename,
 has_table_privilege(u.usename, t.tablename, 'select') as select,
 has_table_privilege(u.usename, t.tablename, 'insert') as insert,
 has_table_privilege(u.usename, t.tablename, 'update') as update,
 has_table_privilege(u.usename, t.tablename, 'delete') as delete
from pg_tables t, pg_user u
where t.tablename = 'customer'
and u.usename in ('appwriter','appreader');

tablename | usename | select | insert | update | delete
----------+-----------+--------+--------+--------+--------
customer | appwriter | t | t | t | t
customer | appreader | t | f | f | f
(2 rows)

	

99	|	P a g e 	
	

	
With	the	publication	of	CVE-2018-1058,	it	is	also	recommended	that	all	privileges	be	
revoked	from	the	public	schema	for	all	users	on	all	databases:

postgres=# REVOKE CREATE ON SCHEMA public FROM PUBLIC;
REVOKE

Default	Value:	

The	table	owner/creator	has	full	privileges;	all	other	users	must	be	explicitly	granted	
access.	

References:	

1. https://www.postgresql.org/docs/current/static/sql-grant.html	
2. https://www.postgresql.org/docs/current/static/sql-revoke.html	
3. https://www.postgresql.org/docs/current/static/functions-info.html#functions-

info-access-table	
4. https://wiki.postgresql.org/wiki/A_Guide_to_CVE-2018-

1058:_Protect_Your_Search_Path	

CIS	Controls:	

5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	
are	required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	
functions	and	monitor	for	anomalous	behavior.	

	

100	|	P a g e 	
	

4.6 Ensure Row Level Security (RLS) is configured correctly (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

In	addition	to	the	SQL-standard	privilege	system	available	through	GRANT,	tables	can	have	
row	security	policies	that	restrict,	on	a	per-user	basis,	which	individual	rows	can	be	
returned	by	normal	queries	or	inserted,	updated,	or	deleted	by	data	modification	
commands.	This	feature	is	also	known	as	Row	Level	Security	(RLS).	By	default,	tables	do	
not	have	any	policies,	so	if	a	user	has	access	privileges	to	a	table	according	to	the	SQL	
privilege	system,	all	rows	within	it	are	equally	available	for	querying	or	updating.	Row	
security	policies	can	be	specific	to	commands,	to	roles,	or	to	both.	A	policy	can	be	specified	
to	apply	to	ALL	commands,	or	to	any	combination	of	SELECT,	INSERT,	UPDATE,	or	DELETE.	
Multiple	roles	can	be	assigned	to	a	given	policy,	and	normal	role	membership	and	
inheritance	rules	apply.	

If	you	use	RLS	and	apply	restrictive	policies	to	certain	users,	it	is	important	that	the	Bypass
RLS	privilege	not	be	granted	to	any	unauthorized	users.	This	privilege	overrides	RLS-
enabled	tables	and	associated	policies.	Generally,	only	superusers	and	elevated	users	
should	possess	this	privilege.	

Rationale:	

If	RLS	policies	and	privileges	are	not	configured	correctly,	users	could	perform	actions	on	
tables	that	they	are	not	authorized	to	perform,	such	as	inserting,	updating,	or	deleting	
rows.	

Audit:	

The	first	step	for	an	organization	is	to	determine	which,	if	any,	database	tables	require	RLS.	
This	decision	is	a	matter	of	business	processes	and	is	unique	to	each	organization.	To	
discover	which,	if	any,	database	tables	have	RLS	enabled,	execute	the	following	query.	If	
any	table(s)	should	have	RLS	policies	applied,	but	do	not	appear	in	query	results,	then	this	
is	a	finding.	

postgres=# SELECT oid, relname, relrowsecurity FROM pg_class WHERE
relrowsecurity;

For	the	purpose	of	this	illustration,	we	will	demonstrate	the	standard	example	from	the	
PostgreSQL	documentation	using	thepasswd	table	and	policy	example.	As	of	PostgreSQL	

	

101	|	P a g e 	
	

9.5,	the	catalog	table	pg_class	provides	column	relrowsecurity	to	query	and	determine	
whether	a	relation	has	RLS	enabled.	Based	on	results	below	we	can	see	RLS	is	not	enabled.	
Assuming	this	table	should	be	RLS	enabled	but	is	not,	this	is	a	finding.

postgres=# SELECT oid, relname, relrowsecurity FROM pg_class WHERE relname =
'passwd';
 oid | relname | relrowsecurity
-------+---------+----------------
 24679 | passwd | f
(1 row)

Further	inspection	of	RLS	policies	are	provided	via	the	system	catalogpg_policy,	which	
records	policy	details	including	table	oid,	policy	name,	applicable	commands,	the	roles	
assigned	a	policy,	and	the	USING	and	WITH CHECK	clauses.	Finally,	RLS	and	associated	
policies	(if	implemented)	may	also	be	viewed	using	the	standard	psql	display	command	
\d+ <schema>.<table>	which	lists	RLS	information	as	part	of	the	table	description.	
Should	you	implement	Row	Level	Security	and	apply	restrictive	policies	to	certain	users,	
it's	imperative	that	you	check	each	user's	role	definition	via	the	psql	display	command	\du	
and	ensure	unauthorized	users	have	not	been	granted	Bypass RLS	privilege	as	this	would	
override	any	RLS	enabled	tables	and	associated	policies.	If	unauthorized	users	do	have	
Bypass RLS	granted	then	resolve	this	using	the	ALTER ROLE<user>NOBYPASSRLS;	command.

Remediation:	

Again,	we	are	using	the	example	from	the	PostgreSQL	documentation	using	the	example	
passwd	table.	We	will	create	three	database	roles	to	illustrate	the	workings	of	RLS:	

postgres=# CREATE ROLE admin;
CREATE ROLE
postgres=# CREATE ROLE bob;
CREATE ROLE
postgres=# CREATE ROLE alice;
CREATE ROLE

Now,	we	will	insert	known	data	into	the	passwd	table:

postgres=# INSERT INTO passwd VALUES
 ('admin','xxx',0,0,'Admin','111-222-3333',null,'/root','/bin/dash');
INSERT 0 1
postgres=# INSERT INTO passwd VALUES
 ('bob','xxx',1,1,'Bob','123-456-7890',null,'/home/bob','/bin/zsh');
INSERT 0 1
postgres=# INSERT INTO passwd VALUES
 ('alice','xxx',2,1,'Alice','098-765-4321',null,'/home/alice','/bin/zsh');
INSERT 0 1	

	

102	|	P a g e 	
	

And	we	will	enable	RLS	on	the	table:

postgres=# ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;
ALTER TABLE

Now	that	RLS	is	enabled,	we	need	to	define	one	or	more	policies.	Create	the	administrator	
policy	and	allow	it	access	to	all	rows:

postgres=# CREATE POLICY admin_all ON passwd TO admin USING (true) WITH
CHECK (true);
CREATE POLICY

Create	a	policy	for	normal	users	to	view	all	rows:

postgres=# CREATE POLICY all_view ON passwd FOR SELECT USING (true);
CREATE POLICY

Create	a	policy	for	normal	users	that	allows	them	to	update	only	their	own	rows	and	to	
limit	what	values	can	be	set	for	their	login	shell:

postgres=# CREATE POLICY user_mod ON passwd FOR UPDATE
 USING (current_user = user_name)
 WITH CHECK (
 current_user = user_name AND
 shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/tcsh')
);
CREATE POLICY

Grant	all	the	normal	rights	on	the	table	to	the	admin	user:

postgres=# GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
GRANT

Grant	only	select	access	on	non-sensitive	columns	to	everyone:

postgres=# GRANT SELECT
 (user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
 ON passwd TO public;
GRANT

Grant	update	to	only	the	sensitive	columns:

postgres=# GRANT UPDATE
 (pwhash, real_name, home_phone, extra_info, shell)
 ON passwd TO public;
GRANT

	

103	|	P a g e 	
	

Ensure	that	no	one	has	been	granted	Bypass RLS	inadvertantly,	by	running	the	psql	
display	command	\du.	If	unauthorized	users	do	have	Bypass RLS	granted	then	resolve	this	
using	the	ALTER ROLE <user> NOBYPASSRLS;	command.	

You	can	now	verify	that	'admin',	'bob',	and	'alice'	are	properly	restricted	by	querying	the	
passwd	table	as	each	of	these	roles.

References:	

1. https://www.postgresql.org/docs/current/static/ddl-rowsecurity.html	
2. https://www.postgresql.org/docs/current/static/sql-alterrole.html	

CIS	Controls:	

14.4	Protect	Information	With	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	
enforce	the	principle	that	only	authorized	individuals	should	have	access	to	the	
information	based	on	their	need	to	access	the	information	as	a	part	of	their	
responsibilities.	

	

104	|	P a g e 	
	

5 Connection and Login

The	restrictions	on	Client/User	connections	to	the	PostgreSQL	database	blocks	
unauthorized	access	to	data	and	services	by	setting	access	rules.	These	security	measures	
help	to	ensure	that	successful	logins	cannot	be	easily	made	through	brute-force	password	
attacks,	pass	the	hash,	or	intuited	by	clever	social	engineering	exploits.	Settings	are	
generally	recommended	to	be	applied	to	all	defined	profiles.	The	following	presents	
standalone	examples	of	logins	for	particular	use	cases.	The	authentication	rules	are	read	
from	the	Postgres	host-based	authentication	file,	pg_hba.conf,	from	top	to	bottom.	The	
first	rule	conforming	to	the	condition	of	the	request	executes	the	METHOD.	Incorrectly	
applied	rules,	as	defined	by	a	single	line	instruction,	can	substantially	alter	the	intended	
behavior	resulting	in	either	allowing	or	denying	login	attempts.	It	is	strongly	recommended	
that	authentication	configurations	be	constructed	incrementally	with	rigid	testing	for	each	
newly	applied	rule.	Because	of	the	large	number	of	different	variations,	this	SECTION	limits	
itself	to	a	small	number	of	authentication	methods	that	can	be	successfully	applied	under	
most	circumstances.	Further	analysis,	using	the	other	authentication	methods	available	in	
Postgres,	is	encouraged.	

5.1 Ensure login via "local" UNIX Domain Socket is configured correctly
(Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

A	remote	host	login,	via	ssh,	is	arguably	the	most	secure	means	of	remotely	accessing	and	
administrating	the	Postgres	server.	Connecting	with	the	psql	CLI,	via	UNIX	DOMAIN	
SOCKETS,	using	the	peer	METHOD	is	the	most	secure	mechanism	available	for	local	
connections.	Provided	a	database	user	account	of	the	same	name	of	the	UNIX	account	has	
already	been	defined	in	the	database,	even	ordinary	user	accounts	can	access	the	cluster	in	
a	similarly	highly	secure	manner.	

Rationale:	

Audit:	

Newly	created	data	clusters	are	empty	of	data	and	have	only	one	user	account,	the	
superuser	(postgres).	By	default,	the	data	cluster	superuser	is	named	after	the	UNIX	

	

105	|	P a g e 	
	

account.	Login	authentication	is	tested	via	UNIX	DOMAIN	SOCKETS	by	the	UNIX	user	
account	postgres,	the	default	account:	

$ whoami
postgres
$ psql postgres
psql (9.5.10)
Type "help" for help.

postgres=#

Login	attempts	by	another	UNIX	user	account	as	the	superuser	should	be	denied:	
	

$ su - <user1>
$ whoami
user1
$ psql -U postgres postgres
psql: FATAL: Peer authentication failed for user "postgres"
$ exit
$ su - <user2>
$ whoami
user2
$ psql -U postgres postgres
psql: FATAL: Peer authentication failed for user "postgres"
$ psql -U user1 postgres
psql: FATAL: Peer authentication failed for user "user1"

This	test	demonstrates	the	rule	permitting	connections	when	the	database	ROLE	matches	
the	UNIX	account.

Remediation:	

Creation	of	a	database	account	that	matches	the	local	account	allows	PEER	authentication:	

$ psql -c "create role user1 with login password 'mypassword';"
CREATE ROLE

Execute	the	following	as	the	UNIX	user	account,	the	default	authentication	rules	should	
now	permit	the	login:	

$ su - user1
$ psql postgres
psql (9.5.10)
Type "help" for help.

postgres=#

	

106	|	P a g e 	
	

As	per	the	host-based	authentication	rules	in	$PGDATA/pg_hba.conf,	all	login	attempts	via	
UNIX	DOMAIN	SOCKETS	are	processed	on	the	line	beginning	with	local.	
This	is	the	minimal	rule	that	must	be	in	place	allowing	PEER	connections:	

TYPE DATABASE USER ADDRESS METHOD
local all postgres peer

More	traditionally,	a	rule	like	the	following	would	be	used	to	allow	any	local	PEER	
connection:

TYPE DATABASE USER ADDRESS METHOD
local all all peer

Once	edited,	the	server	process	must	reload	the	authentication	file	before	it	can	take	effect.	
Improperly	configured	rules	cannot	update	i.e.	the	old	rules	remain	in	place.	The	Postgres	
logs	will	report	the	outcome	of	the	SIGHUP:

[root@localhost ~]# service postgresql-9.5 reload

The	following	examples	illustrate	other	possible	configurations.	The	resultant	"rule"	of	
success/failure	depends	upon	the	first	matching	line:

allow postgres user logins
TYPE DATABASE USER ADDRESS METHOD
local all postgres peer

allow all local users
TYPE DATABASE USER ADDRESS METHOD
local all all peer

allow all local users only if they are connecting to a db named the same
as their username
TYPE DATABASE USER METHOD
local samerole all peer

allow only local users who are members of the 'rw' role in the db
TYPE DATABASE USER ADDRESS METHOD
local all +rw peer

References:	

1. https://www.postgresql.org/docs/current/static/client-authentication.html	
2. https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html	 	

	

107	|	P a g e 	
	

CIS	Controls:	

3.4	Use	Only	Secure	Channels	For	Remote	System	Administration	
Perform	all	remote	administration	of	servers,	workstation,	network	devices,	and	
similar	equipment	over	secure	channels.	Protocols	such	as	telnet,	VNC,	RDP,	or	others	
that	do	not	actively	support	strong	encryption	should	only	be	used	if	they	are	
performed	over	a	secondary	encryption	channel,	such	as	SSL,	TLS	or	IPSEC.	

	

108	|	P a g e 	
	

5.2 Ensure login via "host" TCP/IP Socket is configured correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

A	large	number	of	authentication	METHODs	are	available	for	hosts	connecting	using	
TCP/IP	sockets,	including:	

• trust		
• reject		
• md5		
• password		
• gss		
• sspi		
• ident		
• pam		
• ldap		
• radius		
• cert		

METHODs	trust,	password,	and	ident	are	not	to	be	used	for	remote	logins.	METHOD	md5	is	
the	most	popular	and	can	be	used	either	in	both	encrypted	and	unencrypted	sessions.	

Use	of	the	gss,	sspi,	pam,	ldap,	radius,	and	cert	METHODs	are	dependent	upon	the	
availability	of	external	authenticating	processes/services.	

Rationale:	

Audit:	

Newly	created	data	clusters	are	empty	of	data	and	has	one	only	one	user	account,	the	
superuser.	By	default,	the	data	cluster	superuser	is	named	after	the	UNIX	account	
postgres.	Login	authentication	can	be	tested	via	TCP/IP	SOCKETS	by	any	UNIX	user	
account	from	the	localhost.	A	password	must	be	assigned	to	each	login	ROLE:	

postgres=# alter role postgres with password <my password>;
ALTER ROLE

Test	an	unencrypted	session:	

$ psql 'host=localhost user=postgres sslmode=disable'
Password:

	

109	|	P a g e 	
	

Test	an	encrypted	session:	

$ psql 'host=localhost user=postgres sslmode=require'
Password:

Remote	logins	repeat	the	previous	invocations	but,	of	course,	from	the	remote	host:	
Test	unencrypted	session:	

$ psql 'host=<my host> user=postgres sslmode=disable'
Password:

Test	encrypted	sessions:	

$ psql 'host=<my host> user=postgres sslmode=require'
Password:

Remediation:	

Confirm	a	login	attempt	has	been	made	by	looking	for	a	logged	error	message	detailing	the	
nature	of	the	authenticating	failure.	In	the	case	of	failed	login	attempts,	whether	encrypted	
or	unencrypted,	check	the	following:	

• The	server	should	be	sitting	on	a	port	exposed	to	the	remote	connecting	host	i.e.	
NOT	ip	address	127.0.0.1	

listen_addresses = '*'

• An	authenticating	rule	must	exist	in	the	file	pg_hba.conf	

This	example	permits	only	encrypted	sessions	for	the	postgres	role	and	denies	all	
unencrypted	session	for	the	postgres	role:	
TYPE DATABASE USER ADDRESS METHOD
 hostssl all postgres 0.0.0.0/0 md5
 hostnossl all postgres 0.0.0.0/0 reject

The	following	examples	illustrate	other	possible	configurations.	The	resultant	"rule"	of	
success/failure	depends	upon	the	first	matching	line.

allow `postgres` user only from 'localhost/loopback' connections
TYPE DATABASE USER ADDRESS METHOD
host all postgres 127.0.0.1/32 md5

allow users to connect remotely only to the database named after them:
TYPE DATABASE USER ADDRESS METHOD
host samerole all 0.0.0.0/0 md5

allow only those users who are a member of the 'rw' role to connect
only to the database named after them:

	

110	|	P a g e 	
	

TYPE DATABASE USER ADDRESS METHOD
host samerole +rw 0.0.0.0/0 md5

References:	

1. https://www.postgresql.org/docs/current/static/client-authentication.html	
2. https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html	

Notes:	

1. Use	TYPE	"hostssl"	when	administrating	the	database	cluster	as	a	superuser.	
2. Use	TYPE	"hostnossl"	for	performance	purposes	and	when	DML	operations	are	

deemed	safe	without	SSL	connections.	
3. No	examples	have	been	given	for	ADDRESS,	i.e.,	CIDR,	hostname,	domain	names,	etc.	
4. Only	three	(3)	types	of	METHOD	have	been	documented;	there	are	more.	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

111	|	P a g e 	
	

6 PostgreSQL Settings

As	PostgreSQL	evolves	with	each	new	iteration,	configuration	parameters	are	constantly	
being	added,	deprecated	or	removed.	These	configuration	parameters	define	not	only	
server	function	but	how	well	it	performs	too.	Many	routine	activities,	combined	with	a	
specific	set	of	configuration	parameter	values,	can	sometimes	result	in	degraded	
performance	and,	under	a	specific	set	of	conditions,	even	comprise	the	security	of	the	
RDBMS.	The	fact	of	the	matter	is	that	any	parameter	has	the	potential	to	affect	the	
accessibility	and	performance	of	a	running	server.	Rather	than	describing	all	the	possible	
combination	of	events,	this	benchmark	describes	how	a	parameter	can	be	compromised.	
Examples	reflect	the	most	common,	and	easiest	to	understand	exploits.	Although	by	no	
means	exhaustive,	it	is	hoped	that	you	will	be	able	to	understand	the	attack	vectors	in	the	
context	of	your	environment.	

6.1 Ensure 'Attack Vectors' Runtime Parameters are Configured (Not
Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Understanding	the	vulnerability	of	postgres	runtime	parameters	by	the	particular	delivery	
method,	or	attack	vector.	

Rationale:	

There	are	as	many	ways	of	compromising	a	server	as	there	are	runtime	parameters.	A	
combination	of	any	one	or	more	of	them	executed	at	the	right	time	under	the	right	
conditions	has	the	potential	to	compromise	the	RDBMS.	Mitigating	risk	is	dependent	upon	
one's	understanding	of	the	attack	vectors	and	includes:	

1. Via	user	session:	includes	those	runtime	parameters	that	can	be	set	by	a	ROLE	that	
persists	for	the	life	of	a	server-client	session.	

2. Via	attribute:	includes	those	runtime	parameters	that	can	be	set	by	a	ROLE	during	a	
server-client	session	that	can	be	assigned	as	an	attribute	for	an	entity	such	as	table,	
index,	database,	or	role.	

3. Via	server	reload:	includes	those	runtime	parameters	that	can	be	set	by	the	
superuser	using	a	SIGHUP	or	configuration	file	reload	command	and	affects	the	
entire	cluster.	

	

112	|	P a g e 	
	

4. Via	server	restart:	includes	those	runtime	parameters	that	can	be	set	and	effected	by	
restarting	the	server	process	and	affects	the	entire	cluster.	

Audit:	

Review	all	configuration	settings.	Configure	postgres	logging	to	record	all	modifications	
and	changes	to	the	RDBMS.	

Remediation:	

In	the	case	of	a	changed	parameter,	the	value	is	returned	back	to	its	default	value.	In	the	
case	of	a	successful	exploit	of	an	already	set	runtime	parameter	then	an	analysis	must	be	
carried	out	determining	the	best	approach	mitigating	the	risk.	

Impact:	

It	can	be	difficult	to	totally	eliminate	risk.	Once	changed,	detecting	a	miscreant	parameter	
can	become	problematic.	

CIS	Controls:	

18.7	Use	Standard	Database	Hardening	Templates	
For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	
templates.	All	systems	that	are	part	of	critical	business	processes	should	also	be	
tested.	

	

113	|	P a g e 	
	

6.2 Ensure 'backend' runtime parameters are configured correctly
(Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

In	order	to	serve	multiple	clients	efficiently,	the	PostgreSQL	server	launches	a	new	
"backend"	process	for	each	client.	A	new	child	process	is	created	immediately	after	an	
incoming	connection	is	detected.	The	runtime	parameters	in	this	benchmark	are	controlled	
by	the	backend	process.	The	server's	performance,	in	the	form	of	slow	queries	causing	a	
denial	of	service,	and	the	RDBM's	auditing	abilities	for	determining	root	cause	analysis	can	
be	compromised.	

Rationale:	

A	denial	of	service	is	possible	by	denying	the	use	of	indexes	and	by	slowing	down	client	
access	to	an	unreasonable	level.	Unsanctioned	behavior	can	be	introduced	by	introducing	
rogue	libraries	which	can	then	be	called	in	a	database	session.	Logging	can	be	altered	and	
obfuscated	inhibiting	root	cause	analysis.	

Audit:	

Issue	the	following	command	to	verify	the	backend	runtime	parameters	are	configured	
correctly:	

postgres=# select name, setting, unit from pg_settings where context like
'%backend%' order by 1;
 name | setting | unit
-----------------------+---------+------
 ignore_system_indexes | off |
 log_connections | on |
 log_disconnections | on |
 post_auth_delay | 0 | s
(4 rows)

Note:	Effecting	changes	to	these	parameters	can	only	be	made	at	server	start.	Therefore,	a	
successful	exploit	may	not	be	detected	until	after	a	server	restart,	i.e.,	during	a	maintenance	
window.	

	

114	|	P a g e 	
	

Remediation:	

Once	detected,	the	unauthorized/undesired	change	can	be	made	by	corrected	the	altered	
configuration	file	and	executing	a	server	restart.	In	the	case	where	the	parameter	has	been	
on	the	command	line	invocation	of	pg_ctl	the	restart	invocation	is	insufficient	and	an	
explicit	stop	and	start	must	instead	be	made.	

1. Query	the	view	pg_settings	and	compare	with	previous	query	outputs	for	any	
changes.	

2. Review	configuration	files	postgresql.conf,	postgresql.auto.conf	and	compare	
with	previously	archived	file	copies	for	any	changes.	

3. Examine	the	process	output	and	look	for	parameters	that	were	used	at	server	
startup,	i.e.	ps aux | grep postgres	or	ps aux | grep postmaster.	

Impact:	

All	changes	made	on	this	level	will	affect	the	overall	behavior	of	the	server.	These	changes	
can	only	be	affected	by	a	server	restart	after	the	parameters	have	been	altered	in	the	
configuration	files.	

References:	

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	

CIS	Controls:	

18.7	Use	Standard	Database	Hardening	Templates	
For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	
templates.	All	systems	that	are	part	of	critical	business	processes	should	also	be	
tested.	

	

115	|	P a g e 	
	

6.3 Ensure 'Postmaster' Runtime Parameters are Configured (Not
Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	runtime	parameters	that	are	executed	by	the	postmaster	process.	

Rationale:	

The	postmaster,	or	postgres,	process,	is	the	supervisory	process	that	assigns	a	backend	
process	to	an	incoming	client	connection.	The	postmaster	manages	key	runtime	
parameters	that	are	either	shared	by	all	backend	connections	or	needed	by	the	postmaster	
process	itself	to	run.	

Audit:	

The	following	parameters	can	only	be	set	at	server	start	by	the	owner	of	the	PostgreSQL	
server	process	and	cluster	i.e.	typically	UNIX	user	account	postgres.	Therefore,	all	exploits	
require	the	successful	compromise	of	either	the	UNIX	account	or	the	postgres	superuser	
account	itself.	

postgres=# select name, setting from pg_settings
where context = 'postmaster' order by 1;
 name | setting
-------------------------------------+--------------------------------------

 allow_system_table_mods | off
 archive_mode | off
 autovacuum_freeze_max_age | 200000000
 autovacuum_max_workers | 3
 autovacuum_multixact_freeze_max_age | 400000000
 bonjour | off
 bonjour_name |
 cluster_name |
 config_file |
/var/lib/pgsql/9.6/data/postgresql.conf
 data_directory | /var/lib/pgsql/9.6/data
 dynamic_shared_memory_type | posix
 event_source | PostgreSQL
 external_pid_file |
 hba_file | /var/lib/pgsql/9.6/data/pg_hba.conf
 hot_standby | off
 huge_pages | try
 ident_file | /var/lib/pgsql/9.6/data/pg_ident.conf
 listen_addresses | localhost

	

116	|	P a g e 	
	

 logging_collector | on
 max_connections | 100
 max_files_per_process | 1000
 max_locks_per_transaction | 64
 max_pred_locks_per_transaction | 64
 max_prepared_transactions | 0
 max_replication_slots | 0
 max_wal_senders | 0
 max_worker_processes | 8
 old_snapshot_threshold | -1
 port | 5432
 shared_buffers | 16384
 shared_preload_libraries |
 ssl | off
 ssl_ca_file |
 ssl_cert_file | server.crt
 ssl_ciphers | HIGH:MEDIUM:+3DES:!aNULL
 ssl_crl_file |
 ssl_ecdh_curve | prime256v1
 ssl_key_file | server.key
 ssl_prefer_server_ciphers | on
 superuser_reserved_connections | 3
 track_activity_query_size | 1024
 track_commit_timestamp | off
 unix_socket_directories | /var/run/postgresql, /tmp
 unix_socket_group |
 unix_socket_permissions | 0777
 wal_buffers | 512
 wal_level | minimal
 wal_log_hints | off
(48 rows)

Remediation:	

Once	detected,	the	unauthorized/undesired	change	can	be	corrected	by	editing	the	altered	
configuration	file	and	executing	a	server	restart.	In	the	case	where	the	parameter	has	been	
on	the	command	line	invocation	of	pg_ctl	the	restart	invocation	is	insufficient	and	an	
explicit	stop	and	start	must	instead	be	made.	
Detecting	a	change	is	possible	by	one	of	the	following	methods:	

1. Query	the	view	pg_settings	and	compare	with	previous	query	outputs	for	any	
changes	

2. Review	configuration	files	postgresql.conf,	postgresql.auto.conf	and	compare	
with	previously	archived	file	copies	for	any	changes	

3. Examine	the	process	output	and	look	for	parameters	that	were	used	at	server	
startup,	i.e.	ps aux | grep postgres	or	ps aux | grep postmaster	

Impact:	

All	changes	made	on	this	level	will	affect	the	overall	behavior	of	the	server.	These	changes	
can	be	effected	by	editing	the	PostgreSQL	configuration	files	and	by	either	executing	a	

	

117	|	P a g e 	
	

server	SIGHUP	from	the	command	line	or,	as	superuser	postgres,	executing	the	SQL	
command	select pg_reload_conf().	A	denial	of	service	is	possible	by	the	over	allocating	
of	limited	resources,	such	as	RAM,	thus	depriving	other	connections	of	much	needed	
resources.	Data	can	be	corrupted	by	allowing	damaged	pages	to	load	or	by	changing	
parameters	to	reinterpret	values	in	an	unexpected	fashion	as	for	example	changing	the	
time	zone.	Client	messages	can	be	altered	in	such	a	way	as	to	interfere	with	the	application	
logic.	Logging	can	be	altered	and	obfuscated	inhibiting	root	cause	analysis.	

References:	

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	

CIS	Controls:	

18	Application	Software	Security	
Application	Software	Security	

	

118	|	P a g e 	
	

6.4 Ensure 'SIGHUP' Runtime Parameters are Configured (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	runtime	parameters	that	are	executed	by	the	SIGHUP	signal.	

Rationale:	

In	order	to	define	server	behavior	and	optimize	server	performance,	the	server's	superuser	
has	the	privilege	of	setting	these	parameters	which	are	found	in	the	configuration	files	
postgresql.conf	and	pg_hba.conf.	Alternatively,	those	parameters	found	in	
postgresql.conf	can	also	be	changed	using	server	login	session	and	executing	the	SQL	
command	ALTER SYSTEM	which	writes	its	changes	in	the	configuration	file	
postgresql.auto.conf.	

Audit:	

The	following	parameters	can	be	set	at	any	time,	without	interrupting	the	server,	by	the	
owner	of	the	postgres	server	process	and	cluster	i.e.	typically	UNIX	user	account	postgres.	

postgres=# select name, setting from pg_settings
where context = 'sighup' order by 1;
 name | setting

---------------------------------+--

--
 archive_command | (disabled)
 archive_timeout | 0
 authentication_timeout | 60
 autovacuum | on
 autovacuum_analyze_scale_factor | 0.1
 autovacuum_analyze_threshold | 50
 autovacuum_naptime | 60
 autovacuum_vacuum_cost_delay | 20
 autovacuum_vacuum_cost_limit | -1
 autovacuum_vacuum_scale_factor | 0.2
 autovacuum_vacuum_threshold | 50
 autovacuum_work_mem | -1
 bgwriter_delay | 200
 bgwriter_flush_after | 64
 bgwriter_lru_maxpages | 100
 bgwriter_lru_multiplier | 2
 checkpoint_completion_target | 0.5
 checkpoint_flush_after | 32
 checkpoint_timeout | 300

	

119	|	P a g e 	
	

 checkpoint_warning | 30
 db_user_namespace | off
 fsync | on
 full_page_writes | on
 hot_standby_feedback | off
 krb_caseins_users | off
 krb_server_keyfile | FILE:/etc/sysconfig/pgsql/krb5.keytab
 log_autovacuum_min_duration | -1
 log_checkpoints | on
 log_destination | stderr
 log_directory | pg_log
 log_file_mode | 0600
 log_filename | postgresql-%a.log
 log_hostname | off
 log_line_prefix | %t [%p]: [%l-1]
db=%d,user=%u,app=%a,client=%
h
 log_rotation_age | 1440
 log_rotation_size | 0
 log_timezone | UTC
 log_truncate_on_rotation | on
 max_standby_archive_delay | 30000
 max_standby_streaming_delay | 30000
 max_wal_size | 64
 min_wal_size | 5
 pre_auth_delay | 0
 restart_after_crash | on
 stats_temp_directory | pg_stat_tmp
 synchronous_standby_names |
 syslog_facility | local0
 syslog_ident | postgres
 syslog_sequence_numbers | on
 syslog_split_messages | on
 trace_recovery_messages | log
 vacuum_defer_cleanup_age | 0
 wal_keep_segments | 0
 wal_receiver_status_interval | 10
 wal_receiver_timeout | 60000
 wal_retrieve_retry_interval | 5000
 wal_sender_timeout | 60000
 wal_sync_method | fdatasync
 wal_writer_delay | 200
 wal_writer_flush_after | 128
(60 rows)

Remediation:	

Restore	all	values	in	the	PostgreSQL	configuration	files	and	invoke	the	server	to	reload	the	
configuration	files.	

Impact:	

All	changes	made	on	this	level	will	affect	the	overall	behavior	of	the	server.	These	changes	
can	be	effected	by	editing	the	PostgreSQL	configuration	files	and	by	either	executing	a	

	

120	|	P a g e 	
	

server	SIGHUP	from	the	command	line	or,	as	superuser	postgres,	executing	the	SQL	
command	select pg_reload_conf().	A	denial	of	service	is	possible	by	the	over	allocating	
of	limited	resources,	such	as	RAM,	thus	depriving	other	connections	of	much	needed	
resources.	Data	can	be	corrupted	by	allowing	damaged	pages	to	load	or	by	changing	
parameters	to	reinterpret	values	in	an	unexpected	fashion	as	for	example	changing	the	
time	zone.	Client	messages	can	be	altered	in	such	a	way	as	to	interfere	with	the	application	
logic.	Logging	can	be	altered	and	obfuscated	inhibiting	root	cause	analysis.	

References:	

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	

CIS	Controls:	

18	Application	Software	Security	
Application	Software	Security	

	

121	|	P a g e 	
	

6.5 Ensure 'Superuser' Runtime Parameters are Configured (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	runtime	parameters	that	can	only	be	executed	by	the	server's	superuser,	which	
is	traditionally	postgres.	

Rationale:	

In	order	to	improve	and	optimize	server	performance,	the	server's	superuser	has	the	
privilege	of	setting	these	parameters	which	are	found	in	the	configuration	file	
postgresql.conf.	Alternatively,	they	can	be	changed	in	a	PostgreSQL	login	session	via	the	
SQL	command	ALTER SYSTEM	which	writes	its	changes	in	the	configuration	file	
postgresql.auto.conf.	

Audit:	

The	following	parameters	can	only	be	set	at	server	start	by	the	owner	of	the	PostgreSQL	
server	process	and	cluster	i.e.	typically	UNIX	user	account	postgres.	Therefore,	all	exploits	
require	the	successful	compromise	of	either	the	UNIX	account	or	the	postgres	superuser	
account	itself.	

postgres=# select name, setting from pg_settings where context = 'superuser'
order by 1;
 name | setting
----------------------------+-------------
 commit_delay | 0
 deadlock_timeout | 1000
 dynamic_library_path | $libdir
 ignore_checksum_failure | off
 lc_messages | en_US.UTF-8
 lo_compat_privileges | off
 log_duration | on
 log_error_verbosity | default
 log_executor_stats | off
 log_lock_waits | on
 log_min_duration_statement | 0
 log_min_error_statement | error
 log_min_messages | warning
 log_parser_stats | off
 log_planner_stats | off
 log_replication_commands | off
 log_statement | ddl
 log_statement_stats | off
 log_temp_files | 0

	

122	|	P a g e 	
	

 max_stack_depth | 2048
 session_preload_libraries |
 session_replication_role | origin
 temp_file_limit | -1
 track_activities | on
 track_counts | on
 track_functions | none
 track_io_timing | off
 update_process_title | on
 wal_compression | off
 zero_damaged_pages | off
(30 rows)

Remediation:	

The	exploit	is	made	in	the	configuration	files.	These	changes	are	effected	upon	server	
restart.	Once	detected,	the	unauthorized/undesired	change	can	be	made	by	editing	the	
altered	configuration	file	and	executing	a	server	restart.	In	the	case	where	the	parameter	
has	been	set	on	the	command	line	invocation	of	pg_ctl	the	restart	invocation	is	
insufficient	and	an	explicit	stop	and	start	must	instead	be	made.	
Detecting	a	change	is	possible	by	one	of	the	following	methods:	

1. Query	the	view	pg_settings	and	compare	with	previous	query	outputs	for	any	
changes.	

2. Review	configuration	files	postgreql.conf,	postgreql.auto.conf	and	compare	
with	previously	archived	file	copies	for	any	changes	

3. Examine	the	process	output	and	look	for	parameters	that	were	used	at	server	
startup,	i.e.	ps aux | grep postgres	or	ps aux | grep postmaster.	

Impact:	

All	changes	made	on	this	level	will	affect	the	overall	behavior	of	the	server.	These	changes	
can	only	be	affected	by	a	server	restart	after	the	parameters	have	been	altered	in	the	
configuration	files.	A	denial	of	service	is	possible	by	the	over	allocating	of	limited	resources,	
such	as	RAM,	thus	depriving	other	connections	of	much	needed	resources.	Data	can	be	
corrupted	by	allowing	damaged	pages	to	load	or	by	changing	parameters	to	reinterpret	
values	in	an	unexpected	fashion	as	for	example	changing	the	time	zone.	Client	messages	
can	be	altered	in	such	a	way	as	to	interfere	with	the	application	logic.	Logging	can	be	
altered	and	obfuscated	inhibiting	root	cause	analysis.	

References:	

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	 	

	

123	|	P a g e 	
	

CIS	Controls:	

5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	
are	required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	
functions	and	monitor	for	anomalous	behavior.	

	

124	|	P a g e 	
	

6.6 Ensure 'User' Runtime Parameters are Configured (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

These	PostgreSQL	runtime	parameters	are	managed	by	the	user	account	(ROLE).	

Rationale:	

In	order	to	improve	performance	and	optimize	features,	a	ROLE	has	the	privilege	of	setting	
numerous	parameters	either	in	a	transaction,	session	or	as	an	entity	attribute.	Any	ROLE	
can	alter	any	of	these	parameters	

Audit:	

There	are	two	methods	that	can	be	used	to	analyze	the	state	of	ROLE	runtime	parameters	
and	to	determine	if	they	have	been	compromised:	

PostgreSQL	logging	
A	cursory	review	of	the	logging	session	instructions	that	are	executed.	

ROLE/ENTITY	attributes	
Inspect	all	catalogs	and	list	attributes	for	database	entities	such	as	ROLE	and	database.	

postgres=# select name, setting from pg_settings
 where context = 'user' order by 1;
 name | setting
-------------------------------------+--------------------
 application_name | psql
 array_nulls | on
 backend_flush_after | 0
 backslash_quote | safe_encoding
 bytea_output | hex
 check_function_bodies | on
 client_encoding | UTF8
 client_min_messages | notice
 commit_siblings | 5
 constraint_exclusion | partition
 cpu_index_tuple_cost | 0.005
 cpu_operator_cost | 0.0025
 cpu_tuple_cost | 0.01
 cursor_tuple_fraction | 0.1
 DateStyle | ISO, MDY
 debug_pretty_print | on
 debug_print_parse | off
 debug_print_plan | off
 debug_print_rewritten | off

	

125	|	P a g e 	
	

 default_statistics_target | 100
 default_tablespace |
 default_text_search_config | pg_catalog.english
 default_transaction_deferrable | off
 default_transaction_isolation | read committed
 default_transaction_read_only | off
 default_with_oids | off
 effective_cache_size | 524288
 effective_io_concurrency | 1
 enable_bitmapscan | on
 enable_hashagg | on
 enable_hashjoin | on
 enable_indexonlyscan | on
 enable_indexscan | on
 enable_material | on
 enable_mergejoin | on
 enable_nestloop | on
 enable_seqscan | on
 enable_sort | on
 enable_tidscan | on
 escape_string_warning | on
 exit_on_error | off
 extra_float_digits | 0
 force_parallel_mode | off
 from_collapse_limit | 8
 geqo | on
 geqo_effort | 5
 geqo_generations | 0
 geqo_pool_size | 0
 geqo_seed | 0
 geqo_selection_bias | 2
 geqo_threshold | 12
 gin_fuzzy_search_limit | 0
 gin_pending_list_limit | 4096
 idle_in_transaction_session_timeout | 0
 IntervalStyle | postgres
 join_collapse_limit | 8
 lc_monetary | en_US.UTF-8
 lc_numeric | en_US.UTF-8
 lc_time | en_US.UTF-8
 local_preload_libraries |
 lock_timeout | 0
 maintenance_work_mem | 65536
 max_parallel_workers_per_gather | 0
 min_parallel_relation_size | 1024
 operator_precedence_warning | off
 parallel_setup_cost | 1000
 parallel_tuple_cost | 0.1
 password_encryption | on
 quote_all_identifiers | off
 random_page_cost | 4
 replacement_sort_tuples | 150000
 row_security | on
 search_path | "$user", public
 seq_page_cost | 1
 sql_inheritance | on
 standard_conforming_strings | on

	

126	|	P a g e 	
	

 statement_timeout | 0
 synchronize_seqscans | on
 synchronous_commit | on
 tcp_keepalives_count | 0
 tcp_keepalives_idle | 0
 tcp_keepalives_interval | 0
 temp_buffers | 1024
 temp_tablespaces |
 TimeZone | US/Eastern
 timezone_abbreviations | Default
 trace_notify | off
 trace_sort | off
 transaction_deferrable | off
 transaction_isolation | read committed
 transaction_read_only | off
 transform_null_equals | off
 vacuum_cost_delay | 0
 vacuum_cost_limit | 200
 vacuum_cost_page_dirty | 20
 vacuum_cost_page_hit | 1
 vacuum_cost_page_miss | 10
 vacuum_freeze_min_age | 50000000
 vacuum_freeze_table_age | 150000000
 vacuum_multixact_freeze_min_age | 5000000
 vacuum_multixact_freeze_table_age | 150000000
 work_mem | 4096
 xmlbinary | base64
 xmloption | content
(104 rows)

Remediation:	

In	the	matter	of	a	user	session,	the	login	sessions	must	be	validated	that	it	is	not	executing	
undesired	parameter	changes.	In	the	matter	of	attributes	that	have	been	changed	in	
entities,	they	must	be	manually	reverted	to	its	default	value(s).	

Impact:	

A	denial	of	service	is	possible	by	the	over	allocating	of	limited	resources,	such	as	RAM,	thus	
depriving	other	connections	of	much	needed	resources.	Changing	VACUUM	parameters	can	
force	a	server	shutdown	which	is	standard	procedure	preventing	data	corruption	from	
transaction	ID	wraparound.	Data	can	be	corrupted	by	changing	parameters	to	reinterpret	
values	in	an	unexpected	fashion,	e.g.	changing	the	time	zone.	Logging	can	be	altered	and	
obfuscated	to	inhibit	root	cause	analysis.	

References:	

1. https://www.postgresql.org/docs/current/static/view-pg-settings.html	 	

	

127	|	P a g e 	
	

CIS	Controls:	

5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	
are	required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	
functions	and	monitor	for	anomalous	behavior.	

	

128	|	P a g e 	
	

6.7 Ensure SSL is enabled and configured correctly (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

SSL	on	a	PostgreSQL	server	should	be	enabled	(set	to	on)	and	configured	to	encrypt	TCP	
traffic	to	and	from	the	server.	

Rationale:	

If	SSL	is	not	enabled	and	configured	correctly,	this	increases	the	risk	of	data	being	
compromised	in	transit.	

Audit:	

To	determine	whether	SSL	is	enabled	(set	to	on),	simply	query	the	parameter	value	while	
logged	into	the	database	using	either	the	SHOW ssl	command	or	SELECT	from	system	
catalog	view	pg_settings	as	illustrated	below.	In	both	cases,	ssl	is	off;	this	is	a	finding.	

postgres=# show ssl;
ssl

off
(1 row)

postgres=# select name, setting, source
 from pg_settings where name = 'ssl';
name | setting | source
-----+---------+--------------------
ssl | off | configuration file
(1 row)

Remediation:	

For	this	example,	and	ease	of	illustration,	we	will	be	using	a	self-signed	certificate	for	the	
server	generated	via	openssl,	and	the	PostgreSQL	defaults	for	file	naming	and	location	in	
the	PostgreSQL	$PGDATA	directory.	

create new certificate and enter details at prompts
$ openssl req -new -text -out server.req

remove passphrase (required for automatic server start up)
$ openssl rsa -in privkey.pem -out server.key && rm privkey.pem

modify certificate to self signed, generate .key and .crt files
$ openssl req -x509 -in server.req -text -key server.key -out server.crt

	

129	|	P a g e 	
	

copy .key and .crt files to appropriate location, here default $PGDATA
$ cp server.key server.crt $PGDATA

restrict file mode for server.key
$ chmod og-rwx server.key

Edit	the	PostgreSQL	configuration	filepostgresql.conf	to	ensure	the	following	items	are	
set.	Again,	we	are	using	defaults.	Note	that	altering	these	parameters	will	require	restarting	
the	cluster.

(change requires restart)
ssl = on

allowed SSL ciphers
ssl_ciphers = 'HIGH:MEDIUM:+3DES:!aNULL'

(change requires restart)
ssl_cert_file = 'server.crt'

(change requires restart)
ssl_key_file = 'server.key'

password_encryption = on

Finally,	restart	PostgreSQL	and	confirmssl	using	commands	outlined	in	Audit	Procedures.	
For	this	example,	all	commands	executed	as	postgres	account	with	appropriate	sudo	
privileges	granted.

postgres=# show ssl;
 ssl

 on
(1 row)

Impact:	

A	self-signed	certificate	can	be	used	for	testing,	but	a	certificate	signed	by	a	certificate	
authority	(CA)	(either	one	of	the	global	CAs	or	a	local	one)	should	be	used	in	production	so	
that	clients	can	verify	the	server's	identity.	If	all	the	database	clients	are	local	to	the	
organization,	using	a	local	CA	is	recommended.	

To	ultimately	enable	and	enforce	ssl	authentication	for	the	server,	appropriate	hostssl	
records	must	be	added	to	the	pg_hba.conf	file.	Be	sure	to	reload	PostgreSQL	after	any	
changes	(restart	not	required).	

Note:	The	hostssl	record	matches	connection	attempts	made	using	TCP/IP,	but	only	when	
the	connection	is	made	with	SSL	encryption.	The	host	record	matches	attempts	made	using	

	

130	|	P a g e 	
	

TCP/IP,	but	allows	both	SSL	and	non-SSL	connections.	The	hostnossl	record	matches	
attempts	made	using	TCP/IP,	but	only	those	without	SSL.	

References:	

1. https://www.postgresql.org/docs/current/static/ssl-tcp.html	
2. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

131	|	P a g e 	
	

6.8 Ensure FIPS 140-2 OpenSSL Cryptography Is Used (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Install,	configure	and	use	OpenSSL	on	a	platform	that	has	a	NIST	certified	FIPS	140-2	
installation	of	OpenSSL.	This	provides	PostgreSQL	instances	the	ability	to	generate	and	
validate	cryptographic	hashes	to	protect	unclassified	information	requiring	confidentiality	
and	cryptographic	protection,	in	accordance	with	the	data	owner's	requirements.	

Rationale:	

Federal	Information	Processing	Standard	(FIPS)	Publication	140-2	is	a	computer	security	
standard	developed	by	a	U.S.	Government	and	industry	working	group	for	validating	the	
quality	of	cryptographic	modules.	Use	of	weak	or	untested	encryption	algorithms	
undermines	the	purposes	of	utilizing	encryption	to	protect	data.	Postgres	uses	OpenSSL	for	
the	underlying	encryption	layer.	

The	database	and	application	must	implement	cryptographic	modules	adhering	to	the	
higher	standards	approved	by	the	federal	government	since	this	provides	assurance	they	
have	been	tested	and	validated.	It	is	the	responsibility	of	the	data	owner	to	assess	the	
cryptography	requirements	in	light	of	applicable	federal	laws,	Executive	Orders,	directives,	
policies,	regulations,	and	standards.	

For	detailed	information,	refer	to	NIST	FIPS	Publication	140-2,	Security	Requirements	for	
Cryptographic	Modules.	Note	that	the	product's	cryptographic	modules	must	be	validated	
and	certified	by	NIST	as	FIPS-compliant.	The	security	functions	validated	as	part	of	FIPS	
140-2	for	cryptographic	modules	are	described	in	FIPS	140-2	Annex	A.	Currently	only	Red	
Hat	Enterprise	Linux	is	certified	as	a	FIPS	140-2	distribution	of	OpenSSL.	For	other	
operating	systems,	users	must	obtain	or	build	their	own	FIPS	140-2	OpenSSL	libraries.	

Audit:	

If	PostgreSQL	is	not	installed	on	Red	Hat	Enterprise	Linux	(RHEL)	or	CentOS	then	FIPS	
cannot	be	enabled	natively.	Otherwise	the	deployment	must	incorporate	a	custom	build	of	
the	operating	system.		 	

	

132	|	P a g e 	
	

As	the	system	administrator:	

1. Run	the	following	to	see	if	FIPS	is	enabled:	

$ cat /proc/sys/crypto/fips_enabled
1

If	fips_enabled	is	not	1,	then	the	system	is	not	FIPS	enabled.

2. Run	the	following	(your	results	and	version	may	vary):	

$ openssl version
OpenSSL 1.0.1e-fips 11 Feb 2013

If	fips	is	not	included	in	the	openssl	version,	then	the	system	is	not	FIPS	capable.

Remediation:	

Configure	OpenSSL	to	be	FIPS	compliant.	PostgreSQL	uses	OpenSSL	for	cryptographic	
modules.	To	configure	OpenSSL	to	be	FIPS	140-2	compliant,	see	the	official	RHEL	
Documentation.	Below	is	a	general	summary	of	the	steps	required:	

• Disable	prelinking	

$ echo PRELINKING=no > /etc/sysconfig/prelink

• Undo	any	prelinking	on	any	system	files	

$ prelink -u -a

• Install	the	dracut-fips	package	

$ yum -y install dracut-fips

• Recreate	the	initramfs	file	

$ dracut -f

• Modify	the	kernel	command	line	of	the	current	kernel	in	the	/boot/grub/grub.conf	
file	by	adding	the	following	option:	fips=1	

• Reboot	the	system	for	changes	to	take	effect.	
• Verify	fips_enabled	according	to	Audit	Procedure	above.	 	

	

133	|	P a g e 	
	

References:	

1. https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/sect-Security_Guide-
Federal_Standards_And_Regulations-
Federal_Information_Processing_Standard.html	

2. http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1758.pdf	
3. http://csrc.nist.gov/publications/PubsFIPS.html	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

134	|	P a g e 	
	

6.9 Ensure the pgcrypto extension is installed and configured correctly
(Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	must	implement	cryptographic	mechanisms	to	prevent	unauthorized	
disclosure	or	modification	of	organization-defined	information	at	rest	(to	include,	at	a	
minimum,	PII	and	classified	information)	on	organization-defined	information	system	
components.	

Rationale:	

PostgreSQL	handling	data	requiring	"data	at	rest"	protections	must	employ	cryptographic	
mechanisms	to	prevent	unauthorized	disclosure	and	modification	of	the	information	at	
rest.	These	cryptographic	mechanisms	may	be	native	to	PostgreSQL	or	implemented	via	
additional	software	or	operating	system/file	system	settings,	as	appropriate	to	the	
situation.	Information	at	rest	refers	to	the	state	of	information	when	it	is	located	on	a	
secondary	storage	device	(e.g.	disk	drive,	tape	drive)	within	an	organizational	information	
system.	

Selection	of	a	cryptographic	mechanism	is	based	on	the	need	to	protect	the	integrity	of	
organizational	information.	The	strength	of	the	mechanism	is	commensurate	with	the	
security	category	and/or	classification	of	the	information.	Organizations	have	the	flexibility	
to	either	encrypt	all	information	on	storage	devices	(i.e.	full	disk	encryption)	or	encrypt	
specific	data	structures	(e.g.	files,	records,	or	fields).	

The	decision	whether,	and	what,	to	encrypt	rests	with	the	data	owner	and	is	also	
influenced	by	the	physical	measures	taken	to	secure	the	equipment	and	media	on	which	
the	information	resides.	Organizations	may	choose	to	employ	different	mechanisms	to	
achieve	confidentiality	and	integrity	protections,	as	appropriate.	If	the	confidentiality	and	
integrity	of	application	data	is	not	protected,	the	data	will	be	open	to	compromise	and	
unauthorized	modification.	

The	PostgreSQL	pgcrypto	extension	provides	cryptographic	functions	for	PostgreSQL	and	
is	intended	to	address	the	confidentiality	and	integrity	of	user	and	system	information	at	
rest	in	non-mobile	devices.	 	

	

135	|	P a g e 	
	

Audit:	

One	possible	way	to	encrypt	data	within	PostgreSQL	is	to	use	the	pgcrypto	extension.	
To	check	if	pgcrypto	is	installed	on	PostgreSQL,	as	a	database	administrator	run	the	
following	commands:	

postgres=# SELECT * FROM pg_available_extensions where name='pgcrypto';

name | default_version | installed_version | comment
----------+-----------------+-------------------+-------------------------
pgcrypto | 1.2 | | cryptographic functions
(1 row)

If	data	in	the	database	requires	encryption	and	pgcrypto	is	not	available,	this	is	a	finding.	
If	disk	or	filesystem	requires	encryption,	ask	the	system	owner,	DBA,	and	SA	to	
demonstrate	the	use	of	disk-level	encryption.	If	this	is	required	and	is	not	found,	this	is	a	
finding.	If	controls	do	not	exist	or	are	not	enabled,	this	is	a	finding.

Remediation:	

The	pgcrypto	extension	is	included	with	the	PostgreSQL	'contrib'	package.	Although	
included,	it	needs	to	be	created	in	the	database.	This	installation	assumes	that	the	database	
has	been	initialized	and	the	'contrib'	package	is	installed.	
As	the	database	administrator,	run	the	following:	

postgres=# CREATE EXTENSION pgcrypto;
CREATE EXTENSION

Verifypgcrypto	is	installed:

postgres=# SELECT * FROM pg_available_extensions where name='pgcrypto';
 name | default_version | installed_version | comment
----------+-----------------+-------------------+-------------------------
 pgcrypto | 1.2 | 1.2 | cryptographic functions
(1 row)

References:	

1. http://www.postgresql.org/docs/current/static/pgcrypto.html	

CIS	Controls:	

14.5	Encrypt	At	Rest	Sensitive	Information	
Sensitive	information	stored	on	systems	shall	be	encrypted	at	rest	and	require	a	
secondary	authentication	mechanism,	not	integrated	into	the	operating	system,	in	
order	to	access	the	information.	

	

136	|	P a g e 	
	

7 Replication

Data	redundancy	often	plays	a	major	role	as	part	of	an	overall	database	strategy.	
Replication	is	an	example	of	data	redundancy	and	fulfills	both	High	Availability	and	High	
Performance	requirements.	However,	although	the	DBA	may	have	expended	much	time	
and	effort	securing	the	PRIMARY	host	and	taken	the	time	to	harden	STANDBY	
configuration	parameters,	one	sometimes	overlooks	the	medium	transmitting	the	data	
itself	over	the	network.	Consequently,	replication	is	an	appealing	attack	vector	given	that	
all	DDL,	and	DML	operations	executed	on	the	PRIMARY,	or	master,	host	is	sent	over	the	
wire	to	the	SECONDARY/STANDBY,	or	slave,	hosts.	Fortunately,	when	correctly	
understood,	defeating	such	attacks	can	be	implemented	in	a	straight	forward	manner.	This	
benchmark	reviews	those	issues	surrounding	the	most	common	mechanisms	of	replicating	
data	between	hosts.	There	are	several	PostgreSQL	replication	mechanisms	and	includes:	

• Warm	Standby	(also	known	as	LOG	Shipping)		
o Transaction	logs	are	copied	from	the	PRIMARY	to	SECONDARY	host	that	

reads	the	logs	in	a	"recovery"	mode.	For	all	intents	and	purposes	the	host	
ingesting	the	WAL	cannot	be	read	i.e.	it's	off-line.	

• Hot	Standby		
o Operates	in	the	exact	same	fashion	as	the	Warm	Standby	Server	except	that,	

in	addition,	it	offers	a	read-only	environment	for	client	connections	to	
connect	and	query.	

• Point	In	Time	Recovery	(PITR)		
o Primarily	used	for	database	forensics	and	recovery	at	particular	points	in	

time	such	as	in	the	case	that	important	data	may	have	been	accidentally	
removed.	One	can	restore	the	cluster	to	a	point	in	time	before	the	event	
occurred.	

• Streaming	Replication		
o Uses	an	explicit	connection,	which	in	a	manner	of	speaking	is	similar	to	the	

standard	client	connection,	between	the	PRIMARY	and	STANDBY	host.	It	too	
reads	the	transaction	logs	and	ingests	in	a	read-only	server.	What's	different	
is	that	the	connection	uses	a	special	replication	protocol	which	is	faster	and	
more	efficient	than	log	shipping.	Similarly,	to	standard	client	connections,	it	
also	honors	the	same	authentication	rules	as	expressed	in	the	PostgreSQL	
host-based	authentication	file,	pg_hba.conf.	Although	not	required,	
streaming	replication	also	has	the	ability	to	take	advantage	of	WAL	archiving	
making	it	an	extremely	flexible	solution	for	diverse	and	complex	
configurations	and	operating	conditions.	 	

	

137	|	P a g e 	
	

7.1 Ensure SSL Certificates are Configured For Replication (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Creating	and	managing	SSL	certificates	on	the	PRIMARY	and	STANDBY	host(s).	

Rationale:	

Secure	Sockets	Layer	(SSL)	certificates	enable	encrypted	communications	between	the	
PRIMARY	and	STANDBY	hosts.	SSL	certificates	can	also	be	used	to	authenticate	the	identity	
of	the	host.	The	use	of	SSL	certificates	mitigates	against	sniffing	of	what	would	otherwise	be	
sensitive	information	that's	being	transmitted	in	the	clear.	

Audit:	

Encrypted	sessions	require	the	following	sets	of	conditions:	

• Both	the	server	certificate	and	private	key	exist.	
• The	certificate	and	key	are	located	as	per	the	location	set	in	the	configuration	file	

postgresql.conf.	
• The	runtime	parameter	ssl	is	marked	as	on.	

In	a	client	session:	

• Confirm	the	default	location	of	where	you	should	place	SSL	certificates.	

 postgres=# show ssl_cert_file;
 ssl_cert_file

 server.crt
 (1 row)

 postgres=# show ssl_key_file;
 ssl_key_file

 server.key
 (1 row)

• Confirm	state	of	parameter,	ssl:	

postgres=# show ssl;
 ssl

138	|	P a g e 	
	

 on
(1 row)

Note:	One	can	choose	the	names	of	both	the	server	certificate	and	private	key	but	they	
must	be	correctly	identified	in	the	configuration	file	postgresql.conf.	

Remediation:	

Running	a	server	with	ssl=on	is	not	possible	until	both	a	server	certificate	and	key	have	
been	created,	installed	in	the	correct	location,	and	are	set	with	the	correct	permissions.	
Although	generating	certificates	signed	by	a	Certificate	Authority,	CA	is	ideal,	one	can	use	
self-signed	certificates	too.	

Use	the	following	example	as	a	starting	point	to	generate	a	self-signed	certificate,	the	script	
is	executed	on	the	server	in	question.	Note	that	the	value	of	the	SUBJ	variable	contains	a	
carriage	return	to	allow	for	formatting	-	the	entire	value	should	appear	on	a	single	line	in	
the	script.	

#!/bin/bash

set -e

state='Washington'
city='Seattle'
organization='My Company'
org_unit='My department'
cn=$(hostname -f)
email='you@company.com'

SUBJ="/C=US/ST=$state/L=$city/O=$organization/
 OU=$org_unit/CN=$cn/emailAddress=$email"

Expire in 10 yrs
DAYS=3650

if [-e "$PGDATA"]; then
 KEY="$PGDATA/server.key"
 CRT="$PGDATA/server.crt"
else
 KEY="server.key"
 CRT="server.crt"
fi

openssl req \
 -nodes \
 -x509 \
 -newkey rsa:2048 \
 -keyout $KEY \
 -out $CRT \
 -days $DAYS \
 -subj "$SUBJ"

	

139	|	P a g e 	
	

chmod 600 $KEY
chmod 664 $CRT

echo "DONE"

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-
connection.html#RUNTIME-CONFIG-CONNECTION-SECURITY	

2. https://linux.die.net/man/1/openssl	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

140	|	P a g e 	
	

7.2 Ensure base backups are configured and functional (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

A	base	backup	is	a	copy	of	the	PRIMARY	host's	data	cluster	and	is	used	to	create	STANDBY	
hosts	and	Point	In	Time	Recovery	mechanisms.	Base	backups	should	be	copied	across	
networks	in	a	secure	manner	using	an	encrypted	transport	mechanism.	CLI	examples	
includes	scp,	sftp	and	rsync -e ssh.	Alternatively,	the	CLI	cp	can	be	used	with	an	SSL-
enabled	implementation	of	an	NFS	mount	point,	or	the	PostgreSQL	CLI	pg_basebackup	can	
be	used.	However,	SSL	encryption	should	be	enabled	on	the	server.	Beware	it	is	possible	to	
use	this	utility	without	SSL	encryption	enabled.	

Rationale:	

Audit:	

Remediation:	

There	are	two	methods	of	creating	base	backups;	manual	and	simple.	The	"manual"	method	
explicitly	first	signals	that	a	backup	is	about	to	start	then	copy	both	the	data	cluster	and	
WALs,	using	the	appropriate	tools/utilities,	the	last	step	involves	once	again	signaling	the	
PRIMARY	host	the	completion	of	the	copy	process.	

 postgres=# SELECT pg_start_backup('my base backup');
 pg_start_backup

 0/2000028
 (1 row)

 # copy both the data cluster and
 # all WALs generated during the process
 # ex:
 $ scp -rp $PGDATA user@dest:/path

 postgres=# SELECT pg_stop_backup();
 pg_start_backup

 0/2000030
 (1 row)	

	

141	|	P a g e 	
	

Executing	base	backups	usingpg_basebackup	requires	the	following	additional	steps:

• A	replication	ROLE	is	created	

postgres=# create role replicant with login replication password
'mypassword';
CREATEW ROLE

• Validate	these	runtime	parameters	in	postgresql.conf	
o ssl = on	
o ssl_cert_file = 'server.crt" # permissions 664	
o ssl_key_file = 'server.key' # permissions 600	

• Add	a	replication	entry	to	pg_hba.conf	(adjusting	0.0.0.0/0	to	match	your	CIDR)	

hostssl replication replicant 0.0.0.0/0 md5

• Test	the	connection	with	an	invocation	similar	to	the	following	(notice	the	use	of	
sslmode)	

$ psql 'host=mySrcHost dbname=postgres user=replicant sslmode=require'

• Execute	a	command	similar	to	the	following	from	the	target	host:	

export PGPASSWORD='mypassword'

pg_basebackup -h mySrcHost -p 5432 -U replicant \
 -D /opt/data/postgres/data \
 -P -v -R --xlog-method=stream \
 > pg_basebackup.log 2>&1

References:	

1. https://www.postgresql.org/docs/current/static/functions-
admin.html#FUNCTIONS-ADMIN-BACKUP-TABLE	

2. https://www.postgresql.org/docs/current/static/app-pgbasebackup.html	

CIS	Controls:	

10.2	Test	Backups	Regularly	
Test	data	on	backup	media	on	a	regular	basis	by	performing	a	data	restoration	
process	to	ensure	that	the	backup	is	properly	working.	

	

142	|	P a g e 	
	

7.3 Ensure WAL archiving is configured and functional (Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Write	Ahead	Log	(WAL)	Archiving,	or	Log	Shipping,	is	the	process	of	sending	transaction	
log	files	from	the	PRIMARY	host	either	to	one	or	more	STANDBY	hosts	or	to	be	archived	on	
a	remote	storage	device	for	later	use,	i.e.	PITR.	There	are	several	utilities	that	can	copy	
WALs	including,	but	not	limited	to,	cp,	scp,	sftp,	and	rynsc.	Basically,	the	server	follows	a	
set	of	runtime	parameters	which	defines	when	the	WAL	should	be	copied	using	one	of	the	
aforementioned	utilities.	

Rationale:	

Unless	the	server	has	been	correctly	configured,	one	runs	the	risk	of	sending	WALs	in	an	
unsecured,	unencrypted	fashion.	

Audit:	

Review	the	following	runtime	parameters	in	postgresql.conf.	The	following	example	
demonstrates	rsync	but	requires	that	SSH	as	a	transport	medium	be	enabled	on	the	source	
host:	

archive_mode = on
archive_command = 'rsync -e ssh -a %p
postgres@remotehost:/var/lib/pgsql/WAL/%f'

Confirm	SSH	public/private	keys	have	been	generated	on	both	the	source	and	target	hosts	
in	their	respective	superuser	home	accounts.

Remediation:	

Change	parameters	and	restart	the	server	as	required.	
Note:	SSH	public	keys	must	be	generated	and	installed	as	per	industry	standard.	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-
wal.html#RUNTIME-CONFIG-WAL-ARCHIVING	

2. https://linux.die.net/man/1/ssh-keygen	 	

	

143	|	P a g e 	
	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

144	|	P a g e 	
	

7.4 Ensure streaming replication parameters are configured correctly
(Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

Streaming	replication	from	a	PRIMARY	host	transmits	sensitive	passwords,	DDL,	and	DML	
activities	as	well	as	other	sensitive	data.	These	connections	should	be	protected	with	
Secure	Sockets	Layer	(SSL).	

Rationale:	

Unencrypted	transmissions	could	reveal	sensitive	information	to	unauthorized	parties.	
Unauthenticated	connections	could	enable	man-in-the-middle	attacks.	

Audit:	

Confirm	a	dedicated	and	non-superuser	role	with	replication	permission	exists,	as	for	
example	this	psql	meta-command	is	used	to	list	all	ROLES:	

postgres=# \du+
 List of roles
 Role name | Attributes | Member of | Description
------------+------------------------------------+-----------+-------------
 postgres | Superuser, Create role, Create DB, | {} |
 | Replication, Bypass RLS | |
replicator | Replication | {} |

On	the	target/STANDBY	host,	execute	apsql	invocation	similar	to	the	following,	confirming	
that	SSL	communications	are	possible:

$ psql 'host=mySrcHost dbname=postgres user=replicant password=mypassword
sslmode=require' -c 'select 1'

Remediation:	

Review	these	benchmarks:	

• "ABOUT	BASE-BACKUPS"	
• "ABOUT	SSL	CERTIFICATES"	
• "ABOUT	WAL	ARCHIVING"	 	

	

145	|	P a g e 	
	

Create	a	role	for	replication,	for	example:	
postgres=# create role replicant with login replication password
'mypassword';
CREATE ROLE

Confirm	the	file	recovery.conf	is	present	on	the	STANDBY	host	and	contains	lines	similar	
to	the	following:

standby_mode=on
primary_conninfo = 'user=replicant password=mypassword host=mySrcHost
port=5432 sslmode=require sslcompression=1'

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-
connection.html#RUNTIME-CONFIG-CONNECTION-SECURITY	

2. https://www.postgresql.org/docs/current/static/functions-
admin.html#FUNCTIONS-ADMIN-BACKUP-TABLE	

3. https://www.postgresql.org/docs/current/static/app-pgbasebackup.html	
4. https://www.postgresql.org/docs/current/static/runtime-config-

wal.html#RUNTIME-CONFIG-WAL-ARCHIVING	
5. https://linux.die.net/man/1/openssl	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

146	|	P a g e 	
	

8 Special Configuration Considerations

The	recommendations	proposed	here	are	to	try	and	address	some	of	the	less	come	use	
cases	which	may	warrant	additional	configuration	guidance/consideration.	

8.1 Ensure PostgreSQL configuration files are outside the data cluster
(Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

PostgreSQL	configuration	files	within	the	data	cluster's	directory	tree	can	be	changed	by	
anyone	logging	into	the	data	cluster	as	the	superuser,	i.e.	postgres.	As	a	matter	of	default	
policy,	configuration	files	such	as	postgresql.conf,	pg_hba.conf,	and	pg_ident,	are	placed	
in	the	data	cluster's	directory,	$PGDATA.	PostgreSQL	can	be	configured	to	relocate	these	files	
to	locations	outside	the	data	cluster	which	cannot	then	be	accessed	by	an	ordinary	
superuser	login	session.	

Consideration	should	also	be	given	to	"include	directives";	these	are	cluster	subdirectories	
where	one	can	locate	files	containing	additional	configuration	parameters.	Include	
directives	are	meant	to	add	more	flexibility	for	unique	installs	in	a	much	large	network	
environment	while	maintaining	order	and	consistent	architectural	design.	

Rationale:	

Leaving	PostgreSQL	configuration	files	within	the	data	cluster's	directory	tree	increases	the	
changes	that	they	will	be	inadvertently	or	intentionally	altered.	

Audit:	

Execute	the	following	commands	to	verify	the	configuration	is	correct.	Alternatively,	
inspect	the	parameter	settings	in	postgresql.conf	configuration	file.	

postgres=# SELECT name, setting
postgres-# FROM pg_settings
postgres-# WHERE name IN ('hba_file'
postgres(# ,'ident_file'
postgres(# ,'ssl_cert_file'
postgres(# ,'ssl_key_file'
postgres(# ,'ssl_ca_file'
postgres(# ,'ssl_crl_file'
postgres(# ,'krb_server_keyfile'

	

147	|	P a g e 	
	

postgres(#);
 name | setting
--------------------+---------------------------------------
 hba_file | /var/lib/pgsql/9.5/data/pg_hba.conf
 ident_file | /var/lib/pgsql/9.5/data/pg_ident.conf
 krb_server_keyfile | FILE:/etc/sysconfig/pgsql/krb5.keytab
 ssl_ca_file |
 ssl_cert_file | server.crt
 ssl_crl_file |
 ssl_key_file | server.key
(7 rows)

Execute	the	following	command	to	see	any	active	include	settings:

$ grep ^include $PGDATA/postgresql.{auto.,}conf

Inspect	the	file	directories	and	permissions	for	all	returned	values.	Only	superusers	and	
authorized	users	should	have	access	control	rights	for	these	files.	If	permissions	are	not	
highly	restricted,	this	is	a	finding.

Remediation:	

Follow	these	steps	to	remediate	the	configuration	file	locations	and	permissions:	

1. Determine	appropriate	locations	for	relocatable	configuration	files	based	on	your	
organization's	security	policies.	If	necessary,	relocate	and/or	rename	configuration	
files	outside	of	the	data	cluster.	

2. Ensure	their	file	permissions	are	restricted	as	much	as	possible,	i.e.	only	superuser	
read	access.	

3. Change	the	settings	accordingly	in	the	postgresql.conf	configuration	file.	
4. Restart	the	database	cluster	for	the	changes	to	take	effect.	

Default	Value:	

The	defaults	for	PostgreSQL	configuration	files	are	listed	below.	

#hba_file = 'ConfigDir/pg_hba.conf'
#ident_file = 'ConfigDir/pg_ident.conf'
#ssl_cert_file = 'server.crt'
#ssl_key_file = 'server.key'
#ssl_ca_file = ''
#ssl_crl_file = ''
#krb_server_keyfile = ''
#include_dir = 'conf.d'
#include_if_exists = 'exists.conf'
#include = 'special.conf'	

	

148	|	P a g e 	
	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-file-
locations.html	

2. https://www.postgresql.org/docs/10/static/runtime-config-connection.html	
3. https://www.postgresql.org/docs/10/static/config-setting.html#CONFIG-

INCLUDES	

CIS	Controls:	

18.7	Use	Standard	Database	Hardening	Templates	
For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	
templates.	All	systems	that	are	part	of	critical	business	processes	should	also	be	
tested.	

	

149	|	P a g e 	
	

8.2 Ensure PostgreSQL subdirectory locations are outside the data
cluster (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

The	PostgreSQL	cluster	is	organized	to	carry	out	specific	tasks	in	subdirectories.	For	the	
purposes	of	performance,	reliability,	and	security,	these	subdirectories	should	be	relocated	
outside	the	data	cluster.	

Rationale:	

Some	subdirectories	contain	information,	such	as	logs,	which	can	be	of	value	to	others	such	
as	developers.	Other	subdirectories	can	gain	a	performance	benefit	when	placed	on	fast	
storage	devices.	Finally,	relocating	a	subdirectory	to	a	separate	and	distinct	partition	
mitigates	denial	of	service	and	involuntary	server	shutdown	when	excessive	writes	fill	the	
data	cluster's	partition,	e.g.,	pg_xlog	and	pg_log.	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	configuration	is	correct.	Alternatively,	
inspect	the	parameter	settings	in	the	postgresql.conf	configuration	file.	

postgres=# SELECT name, setting
postgres-# FROM pg_settings
postgres-# WHERE name IN ('data_directory'
postgres(# ,'log_directory'
postgres(# ,'default_tablespace'
postgres(# ,'temp_tablespaces'
postgres(#);
 name | setting
--------------------+-------------------------
 data_directory | /var/lib/pgsql/9.5/data
 default_tablespace |
 log_directory | pg_log
 temp_tablespaces |
(4 rows)

Inspect	the	file	and	directory	permissions	for	all	returned	values.	Only	superusers	and	
authorized	users	should	have	access	control	rights	for	these	files	and	directories.	If	
permissions	are	not	highly	restrictive,	this	is	a	finding.	

	

150	|	P a g e 	
	

Remediation:	

Perform	the	following	steps	to	remediate	the	subdirectory	locations	and	permissions:	

1. Determine	appropriate	data,	log,	and	tablespace	directories	and	locations	based	on	
your	organization's	security	policies.	If	necessary,	relocate	all	listed	directories	
outside	the	data	cluster.	

2. Ensure	file	permissions	are	restricted	as	much	as	possible,	i.e.	only	superuser	read	
access.	

3. When	directories	are	relocated	to	other	partitions,	ensure	that	they	are	of	sufficient	
size	to	mitigate	against	excessive	space	utilization.	

4. Lastly,	change	the	settings	accordingly	in	the	postgresql.conf	configuration	file	
and	restart	the	database	cluster	for	changes	to	take	effect.	

Default	Value:	

The	default	for	data_directory	is	ConfigDir	and	the	default	for	log_directory	is	pg_log	
(based	on	absolute	path	of	data_directory).	The	defaults	for	tablespace	settings	are	null,	
or	not	set,	upon	cluster	creation.	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-file-
locations.html	

CIS	Controls:	

18.7	Use	Standard	Database	Hardening	Templates	
For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	
templates.	All	systems	that	are	part	of	critical	business	processes	should	also	be	
tested.	

	

151	|	P a g e 	
	

8.3 Ensure the backup and restore tool, 'pgBackRest', is installed and
configured (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

pgBackRest	aims	to	be	a	simple,	reliable	backup	and	restore	system	that	can	seamlessly	
scale	up	to	the	largest	databases	and	workloads.	Instead	of	relying	on	traditional	backup	
tools	like	tar	and	rsync,	pgBackRest	implements	all	backup	features	internally	and	uses	a	
custom	protocol	for	communicating	with	remote	systems.	Removing	reliance	on	tar	and	
rsync	allows	for	better	solutions	to	database-specific	backup	challenges.	The	custom	
remote	protocol	allows	for	more	flexibility	and	limits	the	types	of	connections	that	are	
required	to	perform	a	backup	which	increases	security.	

Rationale:	

The	native	PostgreSQL	backup	facility	pg_dump	provides	adequate	logical	backup	
operations	but	does	not	provide	for	Point	In	Time	Recovery	(PITR).	The	PostgreSQL	facility	
pg_basebackup	performs	physical	backup	of	the	database	files	and	does	provide	for	PITR,	
but	it	is	constrained	by	single	threading.	Both	of	these	methodologies	are	standard	in	the	
PostgreSQL	ecosystem	and	appropriate	for	particular	backup/recovery	needs.	pgBackRest	
offers	another	option	with	much	more	robust	features	and	flexibility.	

pgBackRest	is	open	source	software	developed	to	perform	efficient	backup	on	PostgreSQL	
databases	that	measure	in	tens	of	terabytes	and	greater.	It	supports	per	file	checksums,	
compression,	partial/failed	backup	resume,	high-performance	parallel	transfer,	
asynchronous	archiving,	tablespaces,	expiration,	full/differential/incremental,	
local/remote	operation	via	SSH,	hard-linking,	restore,	and	more.	pgBackRest	is	written	in	
Perl	and	does	not	depend	on	rsync	or	tar	but	instead	performs	its	own	deltas	which	gives	
it	maximum	flexibility.	Finally,	pgBackRest	provides	an	easy	to	use	internal	repository	
listing	backup	details	accessible	via	the	pgbackrest info	command,	as	illustrated	below.	

$ pgbackrest info
stanza: proddb01
status: ok

db (current)
 wal archive min/max (9.5-1): 00000008000098E000000036 /
 0000000800009953000000BB

 full backup: 20171028-080001F

	

152	|	P a g e 	
	

 timestamp start/stop: 2017-10-28 08:00:01 / 2017-10-28 12:04:21
 wal start/stop: 00000008000098E000000036 / 00000008000098E100000076
 database size: 2218.1GB, backup size: 2218.1GB
 repository size: 417.3GB, repository backup size: 417.3GB

 full backup: 20171104-080001F
 timestamp start/stop: 2017-11-04 08:00:01 / 2017-11-04 12:20:00
 wal start/stop: 0000000800009934000000B9 / 000000080000993600000008
 database size: 2225.6GB, backup size: 2225.6GB
 repository size: 418.8GB, repository backup size: 418.8GB

Audit:	

pgBackRest	is	not	installed	nor	configured	for	PostgreSQL	by	default,	but	instead	is	
maintained	as	a	GitHub	project.	To	determine	whether	or	not	pgBackRest	has	been	
installed	on	your	system,	simply	invoke	the	executable	pgbackrest	as	the	PostgreSQL	
software	owner,	shown	here	as	postgres.	If	pgBackRest	is	installed,	then	usage	displays	as	
below	-	otherwise	the	pgbackrest: command not found	error	returns.	pgBackRest	
typically	installs	to	/usr/bin/pgbackrest	so	you	could	also	check	for	the	executable	in	that	
location	or	use	OS	commands	find,	locate,	which,	or	something	similar	to	determine	if	the	
product	is	installed.	

$ sudo su - postgres
$ pgbackrest
pgBackRest 1.25 - General help

Usage:
 pgbackrest [options] [command]

Commands:
 archive-get Get a WAL segment from the archive.
 archive-push Push a WAL segment to the archive.
 backup Backup a database cluster.
 check Check the configuration.
 expire Expire backups that exceed retention.
 help Get help.
 info Retrieve information about backups.
 restore Restore a database cluster.
 stanza-create Create the required stanza data.
 stanza-upgrade Upgrade a stanza.
 start Allow pgBackRest processes to run.
 stop Stop pgBackRest processes from running.
 version Get version.

Use 'pgbackrest help [command]' for more information.

Remediation:	

pgBackRest	installation	is	rather	simple	and	straightforward.	All	steps	below	must	be	
performed	as	postgres	with	appropriate	sudo	privileges	granted.	

	

153	|	P a g e 	
	

• Install	required	perl	libraries	

$ sudo yum -y install libdbd-pg-perl libio-socket-ssl-perl libxml-
libxml-perl

• Download	the	project	from	GitHub	

$ sudo wget -q -O - \
 https://github.com/pgbackrest/pgbackrest/archive/release/1.25.tar.gz
| \
 sudo tar zx -C /root

• Install	pgBackRest	

$ sudo cp -r /root/pgbackrest-release-1.25/lib/pgBackRest \
 /usr/share/perl5
$ sudo find /usr/share/perl5/pgBackRest -type f -exec chmod 644 {} +
$ sudo find /usr/share/perl5/pgBackRest -type d -exec chmod 755 {} +
$ sudo cp /root/pgbackrest-release-1.25/bin/pgbackrest
/usr/bin/pgbackrest
$ sudo chmod 755 /usr/bin/pgbackrest
$ sudo mkdir -m 770 /var/log/pgbackrest
$ sudo chown postgres:postgres /var/log/pgbackrest
$ sudo touch /etc/pgbackrest.conf
$ sudo chmod 640 /etc/pgbackrest.conf
$ sudo chown postgres:postgres /etc/pgbackrest.conf

Once	installed,	pgBackRest	must	be	configured	for	things	like	stanza	name,	backup	
location,	retention	policy,	logging,	etc.	Please	consult	the	configuration	guide.	

If	employing	pgBackRest	for	your	backup/recovery	solution,	ensure	the	repository,	base	
backups,	and	WAL	archives	are	stored	on	a	reliable	file	system	separate	from	the	database	
server.	Further,	the	external	storage	system	where	backups	resided	should	have	limited	
access	to	only	those	system	administrators	as	necessary.	Finally,	as	with	any	
backup/recovery	solution,	stringent	testing	must	be	conducted.	A	backup	is	only	good	if	it	
can	be	restored	successfully.	

References:	

1. http://http://pgbackrest.org/	
2. https://github.com/pgbackrest/pgbackrest	
3. https://www.postgresql.org/docs/current/static/app-pgdump.html	
4. https://www.postgresql.org/docs/current/static/app-pgbasebackup.html	 	

	

154	|	P a g e 	
	

CIS	Controls:	

10	Data	Recovery	Capability	
Data	Recovery	Capability	

	

155	|	P a g e 	
	

8.4 Ensure miscellaneous configuration settings are correct (Not Scored)

Profile	Applicability:	

• Level	1	-	PostgreSQL	on	Linux	

Description:	

This	recommendation	covers	non-regular,	special	files,	and	dynamic	libraries.	

PostgreSQL	permits	local	logins	via	the	UNIX	DOMAIN	SOCKET	and,	for	the	most	part,	
anyone	with	a	legitimate	Unix	login	account	can	make	the	attempt.	Limiting	PostgreSQL	
login	attempts	can	be	made	by	relocating	the	UNIX	DOMAIN	SOCKET	to	a	subdirectory	with	
restricted	permissions.	

The	creation	and	implementation	of	user-defined	dynamic	libraries	is	an	extraordinary	
powerful	capability.	In	the	hands	of	an	experienced	DBA/programmer,	it	can	significantly	
enhance	the	power	and	flexibility	of	the	RDBMS.	But	new	and	unexpected	behavior	can	also	
be	assigned	to	the	RDBMS,	resulting	in	a	very	dangerous	environment	in	what	should	
otherwise	be	trusted.	

Rationale:	

Audit:	

Execute	the	following	SQL	statement	to	verify	the	configuration	is	correct.	Alternatively,	
inspect	the	parameter	settings	in	the	postgresql.conf	configuration	file.	

postgres=# SELECT name, setting
postgres-# FROM pg_settings
postgres-# WHERE name IN ('external_pid_file'
postgres(# ,'unix_socket_directories'
postgres(# ,'shared_preload_libraries'
postgres(# ,'dynamic_library_path'
postgres(# ,'local_preload_libraries'
postgres(# ,'session_preload_libraries'
postgres(#);
 name | setting
---------------------------+---------------------------
 dynamic_library_path | $libdir
 external_pid_file |
 local_preload_libraries |
 session_preload_libraries |
 shared_preload_libraries |
 unix_socket_directories | /var/run/postgresql, /tmp
(6 rows)

	

156	|	P a g e 	
	

Inspect	the	file	and	directory	permissions	for	all	returned	values.	Only	superusers	
shouldhave	access	control	rights	for	these	files	and	directories.	If	permissions	are	not	
highly	restricted,	this	is	a	finding.

Remediation:	

Follow	these	steps	to	remediate	the	configuration:	

1. Determine	permissions	based	on	your	organization's	security	policies.	
2. Relocate	all	files	and	ensure	their	permissions	are	restricted	as	much	as	possible,	i.e.	

only	superuser	read	access.	
3. Ensure	all	directories	where	these	files	are	located	have	restricted	permissions	such	

that	the	superuser	can	read	but	not	write.	
4. Lastly,	change	the	settings	accordingly	in	the	postgresql.conf	configuration	file	

and	restart	the	database	cluster	for	changes	to	take	effect.	

Default	Value:	

The	dynamic_library_path	default	is	$libdir	and	unix_socket_directories	default	is	/tmp.	
The	default	for	external_pid_file	and	all	library	parameters	are	initially	null,	or	not	set,	
upon	cluster	creation.	

References:	

1. https://www.postgresql.org/docs/current/static/runtime-config-file-
locations.html	

2. https://www.postgresql.org/docs/10/static/runtime-config-connection.html	
3. https://www.postgresql.org/docs/10/static/runtime-config-client.html	

CIS	Controls:	

18.7	Use	Standard	Database	Hardening	Templates	
For	applications	that	rely	on	a	database,	use	standard	hardening	configuration	
templates.	All	systems	that	are	part	of	critical	business	processes	should	also	be	
tested.	

		

	

157	|	P a g e 	
	

Appendix:	Summary	Table	
Control	 Set	

Correctly	
Yes	 No	

1	 Installation	and	Patches	
1.1	 Ensure	packages	are	obtained	from	authorized	repositories	

(Not	Scored)	 o	 o	

1.2	 Ensure	Installation	of	Community	Packages	(Not	Scored)	 o	 o	
1.3	 Ensure	Installation	of	Binary	Packages	(Not	Scored)	 o	 o	
1.4	 Ensure	Service	Runlevel	Is	Registered	And	Set	Correctly	

(Scored)	 o	 o	

1.5	 Ensure	Data	Cluster	Initialized	Successfully	(Scored)	 o	 o	
2	 Directory	and	File	Permissions	
2.1	 Ensure	the	file	permissions	mask	is	correct	(Scored)	 o	 o	
2.2	 Ensure	the	PostgreSQL	pg_wheel	group	membership	is	

correct	(Scored)	 o	 o	

3	 Logging	Monitoring	And	Auditing	(Centos	6)	
3.1	 PostgreSQL	Logging	
3.1.1	 Logging	Rationale	
3.1.2	 Ensure	the	log	destinations	are	set	correctly	(Scored)	 o	 o	
3.1.3	 Ensure	the	logging	collector	is	enabled	(Scored)	 o	 o	
3.1.4	 Ensure	the	log	file	destination	directory	is	set	correctly	

(Scored)	 o	 o	

3.1.5	 Ensure	the	filename	pattern	for	log	files	is	set	correctly	
(Scored)	 o	 o	

3.1.6	 Ensure	the	log	file	permissions	are	set	correctly	(Scored)	 o	 o	
3.1.7	 Ensure	'log_truncate_on_rotation'	is	enabled	(Scored)	 o	 o	
3.1.8	 Ensure	the	maximum	log	file	lifetime	is	set	correctly	

(Scored)	 o	 o	

3.1.9	 Ensure	the	maximum	log	file	size	is	set	correctly	(Scored)	 o	 o	
3.1.10	 Ensure	the	correct	syslog	facility	is	selected	(Scored)	 o	 o	
3.1.11	 Ensure	the	program	name	for	PostgreSQL	syslog	messages	

is	correct	(Scored)	 o	 o	

3.1.12	 Ensure	the	correct	messages	are	sent	to	the	database	client	
(Not	Scored)	 o	 o	

3.1.13	 Ensure	the	correct	messages	are	written	to	the	server	log	
(Not	Scored)	 o	 o	

3.1.14	 Ensure	the	correct	SQL	statements	generating	errors	are	
recorded	(Not	Scored)	 o	 o	

3.1.15	 Ensure	'log_min_duration_statement'	is	disabled	(Scored)	 o	 o	
3.1.16	 Ensure	'debug_print_parse'	is	disabled	(Scored)	 o	 o	

	

158	|	P a g e 	
	

3.1.17	 Ensure	'debug_print_rewritten'	is	disabled	(Scored)	 o	 o	
3.1.18	 Ensure	'debug_print_plan'	is	disabled	(Scored)	 o	 o	
3.1.19	 Ensure	'debug_pretty_print'	is	enabled	(Scored)	 o	 o	
3.1.20	 Ensure	'log_checkpoints'	is	enabled	(Scored)	 o	 o	
3.1.21	 Ensure	'log_connections'	is	enabled	(Scored)	 o	 o	
3.1.22	 Ensure	'log_disconnections'	is	enabled	(Scored)	 o	 o	
3.1.23	 Ensure	'log_duration'	is	enabled	(Scored)	 o	 o	
3.1.24	 Ensure	'log_error_verbosity'	is	set	correctly	(Not	Scored)	 o	 o	
3.1.25	 Ensure	'log_hostname'	is	set	correctly	(Scored)	 o	 o	
3.1.26	 Ensure	'log_line_prefix'	is	set	correctly	(Not	Scored)	 o	 o	
3.1.27	 Ensure	'log_lock_waits'	is	enabled	(Scored)	 o	 o	
3.1.28	 Ensure	'log_statement'	is	set	correctly	(Scored)	 o	 o	
3.1.29	 Ensure	all	temporary	files	are	logged	(Scored)	 o	 o	
3.1.30	 Ensure	'log_timezone'	is	set	correctly	(Scored)	 o	 o	
3.1.31	 Ensure	'log_parser_stats'	is	disabled	(Scored)	 o	 o	
3.1.32	 Ensure	'log_planner_stats'	is	disabled	(Scored)	 o	 o	
3.1.33	 Ensure	'log_executor_stats'	is	disabled	(Scored)	 o	 o	
3.1.34	 Ensure	'log_statement_stats'	is	disabled	(Scored)	 o	 o	
3.2	 Ensure	the	PostgreSQL	Audit	Extension	(pgAudit)	is	enabled	

(Scored)	 o	 o	

4	 User	Access	and	Authorization	
4.1	 Ensure	sudo	is	configured	correctly	(Scored)	 o	 o	
4.2	 Ensure	valid	public	keys	are	installed	(Scored)	 o	 o	
4.3	 Ensure	excessive	administrative	privileges	are	revoked	

(Scored)	 o	 o	

4.4	 Ensure	excessive	function	privileges	are	revoked	(Scored)	 o	 o	
4.5	 Ensure	excessive	DML	privileges	are	revoked	(Scored)	 o	 o	
4.6	 Ensure	Row	Level	Security	(RLS)	is	configured	correctly	

(Not	Scored)	 o	 o	

5	 Connection	and	Login	
5.1	 Ensure	login	via	"local"	UNIX	Domain	Socket	is	configured	

correctly	(Not	Scored)	 o	 o	

5.2	 Ensure	login	via	"host"	TCP/IP	Socket	is	configured	
correctly	(Scored)	 o	 o	

6	 PostgreSQL	Settings	
6.1	 Ensure	'Attack	Vectors'	Runtime	Parameters	are	Configured	

(Not	Scored)	 o	 o	

6.2	 Ensure	'backend'	runtime	parameters	are	configured	
correctly	(Scored)	 o	 o	

6.3	 Ensure	'Postmaster'	Runtime	Parameters	are	Configured	
(Not	Scored)	 o	 o	

6.4	 Ensure	'SIGHUP'	Runtime	Parameters	are	Configured	(Not	
Scored)	 o	 o	

	

159	|	P a g e 	
	

6.5	 Ensure	'Superuser'	Runtime	Parameters	are	Configured	
(Not	Scored)	 o	 o	

6.6	 Ensure	'User'	Runtime	Parameters	are	Configured	(Not	
Scored)	 o	 o	

6.7	 Ensure	SSL	is	enabled	and	configured	correctly	(Scored)	 o	 o	
6.8	 Ensure	FIPS	140-2	OpenSSL	Cryptography	Is	Used	(Scored)	 o	 o	
6.9	 Ensure	the	pgcrypto	extension	is	installed	and	configured	

correctly	(Not	Scored)	 o	 o	

7	 Replication	
7.1	 Ensure	SSL	Certificates	are	Configured	For	Replication	

(Scored)	 o	 o	

7.2	 Ensure	base	backups	are	configured	and	functional	(Not	
Scored)	 o	 o	

7.3	 Ensure	WAL	archiving	is	configured	and	functional	(Scored)	 o	 o	
7.4	 Ensure	streaming	replication	parameters	are	configured	

correctly	(Not	Scored)	 o	 o	

8	 Special	Configuration	Considerations	
8.1	 Ensure	PostgreSQL	configuration	files	are	outside	the	data	

cluster	(Not	Scored)	 o	 o	

8.2	 Ensure	PostgreSQL	subdirectory	locations	are	outside	the	
data	cluster	(Not	Scored)	 o	 o	

8.3	 Ensure	the	backup	and	restore	tool,	'pgBackRest',	is	
installed	and	configured	(Not	Scored)	 o	 o	

8.4	 Ensure	miscellaneous	configuration	settings	are	correct	
(Not	Scored)	 o	 o	

	

	 	

	

160	|	P a g e 	
	

		

Appendix:	Change	History	
Date	 Version	 Changes	for	this	version	

07-27-2018	 1.0.0	 Initial	Release	

	

	
	

